-
Notifications
You must be signed in to change notification settings - Fork 74
/
denoise_sparse.py
78 lines (58 loc) · 2.11 KB
/
denoise_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import torch.nn.functional as F
from torch import nn
from torch.optim import Adam
from einops import rearrange, repeat
import sidechainnet as scn
from egnn_pytorch.egnn_pytorch import EGNN_Network
torch.set_default_dtype(torch.float64)
BATCH_SIZE = 1
GRADIENT_ACCUMULATE_EVERY = 16
def cycle(loader, len_thres = 200):
while True:
for data in loader:
if data.seqs.shape[1] > len_thres:
continue
yield data
net = EGNN_Network(
num_tokens = 21,
num_positions = 200 * 3, # maximum number of positions - absolute positional embedding since there is inherent order in the sequence
depth = 5,
dim = 8,
num_nearest_neighbors = 16,
fourier_features = 2,
norm_coors = True,
coor_weights_clamp_value = 2.
).cuda()
data = scn.load(
casp_version = 12,
thinning = 30,
with_pytorch = 'dataloaders',
batch_size = BATCH_SIZE,
dynamic_batching = False
)
dl = cycle(data['train'])
optim = Adam(net.parameters(), lr=1e-3)
for _ in range(10000):
for _ in range(GRADIENT_ACCUMULATE_EVERY):
batch = next(dl)
seqs, coords, masks = batch.seqs, batch.crds, batch.msks
seqs = seqs.cuda().argmax(dim = -1)
coords = coords.cuda().type(torch.float64)
masks = masks.cuda().bool()
l = seqs.shape[1]
coords = rearrange(coords, 'b (l s) c -> b l s c', s = 14)
# Keeping only the backbone coordinates
coords = coords[:, :, 0:3, :]
coords = rearrange(coords, 'b l s c -> b (l s) c')
seq = repeat(seqs, 'b n -> b (n c)', c = 3)
masks = repeat(masks, 'b n -> b (n c)', c = 3)
i = torch.arange(seq.shape[-1], device = seq.device)
adj_mat = (i[:, None] >= (i[None, :] - 1)) & (i[:, None] <= (i[None, :] + 1))
noised_coords = coords + torch.randn_like(coords)
feats, denoised_coords = net(seq, noised_coords, adj_mat = adj_mat, mask = masks)
loss = F.mse_loss(denoised_coords[masks], coords[masks])
(loss / GRADIENT_ACCUMULATE_EVERY).backward()
print('loss:', loss.item())
optim.step()
optim.zero_grad()