forked from aloctavodia/Doing_bayesian_data_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
15_YmetricXsinglePyMC.py
67 lines (49 loc) · 1.49 KB
/
15_YmetricXsinglePyMC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
'''
Estimating the mean and standard deviation of a Gaussian likelihood.
'''
import numpy as np
import pymc3 as pm
from scipy.stats import norm
import matplotlib.pyplot as plt
# THE DATA.
# Generate random data from known parameter values:
np.random.seed(4745)
true_mu = 100
true_std = 15
y = norm.rvs(true_mu, true_std, 500)
# Specify the model in PyMC
with pm.Model() as model:
# define the priors
sd = pm.HalfNormal('sd', 25)
mu = pm.Normal('mu', mu=0, sd=100) # PyMC support precission and std
#define the likelihood
yl = pm.Normal('yl', mu, sd, observed=y)
# Generate a MCMC chain
trace = pm.sample(5000)
# EXAMINE THE RESULTS
## Print summary for each trace
#pm.summary(trace)
## Check for mixing and autocorrelation
#pm.autocorrplot(trace, vars =[mu, tau])
## Plot KDE and sampled values for each parameter.
#pm.traceplot(trace)
mu_sample = trace['mu']
sigma_sample = trace['sd']
plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
pm.plot_posterior(mu_sample, bins=30, ax=ax)
ax.set_xlabel('mu')
ax.set_title = 'Posterior'
ax.set_xlim(98, 102)
plt.subplot(1, 2, 2)
mu_mean = np.mean(mu_sample)
sigma_mean = np.mean(sigma_sample)
plt.scatter(mu_sample, sigma_sample , c='gray')
plt.plot(mu_mean, sigma_mean, 'C1*',
label=r'$\mu$ = %.1f, $\sigma$ = %.1f' % (mu_mean, sigma_mean))
plt.xlabel('mu')
plt.ylabel('sigma')
plt.title('Posterior')
plt.legend(loc=0)
plt.savefig('figure_15.3.png')
plt.show()