-
Notifications
You must be signed in to change notification settings - Fork 14
/
attack_mnist.py
168 lines (134 loc) · 5.21 KB
/
attack_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import sys
sys.path.append('./pytorch-cifar')
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
# from models import *
from utils import progress_bar
from pgd import attack
parser = argparse.ArgumentParser(description='PyTorch MNIST attack')
parser.add_argument('--reg', default=1000, type=float,
help='entropy regularization')
parser.add_argument('--p', default=2, type=float, help='p-wasserstein distance')
parser.add_argument('--alpha', default=0.1, type=float, help='PGD step size')
parser.add_argument('--norm', default='linfinity')
parser.add_argument('--ball', default='wasserstein')
parser.add_argument('--checkpoint')
parser.add_argument('--binarize', action='store_true')
args = parser.parse_args()
if args.checkpoint is None:
raise ValueError('Need checkpoint file to attack')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Model
print('==> Building model..')
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
net = nn.Sequential(
nn.Conv2d(1, 16, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(32*7*7,100),
nn.ReLU(),
nn.Linear(100, 10)
)
net = net.to(device)
regularization = args.reg
print('==> regularization set to {}'.format(regularization))
model_name = './checkpoints/{}'.format(args.checkpoint)
save_name = './epsilons/{}_reg_{}_p_{}_alpha_{}_norm_{}_ball_{}.pth'.format(
args.checkpoint, regularization, args.p,
args.alpha, args.norm, args.ball)
binarize = args.binarize
print('==> loading model {}'.format(model_name))
print('==> saving epsilon to {}'.format(save_name))
d = torch.load(model_name)
if 'state_dict' in d:
net.load_state_dict(d['state_dict'][0])
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
elif 'robust' in model_name:
net.load_state_dict(d)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
else:
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
net.load_state_dict(d['net'])
criterion = nn.CrossEntropyLoss()
def test():
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
if binarize:
inputs = (inputs >= 0.5).float()
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
def test_attack():
net.eval()
test_loss = 0
correct = 0
total = 0
all_epsilons = []
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
if binarize:
inputs = (inputs >= 0.5).float()
inputs_pgd, _, epsilons = attack(torch.clamp(inputs,min=0), targets, net,
regularization=regularization,
p=args.p,
alpha=args.alpha,
norm=args.norm,
ball=args.ball,
epsilon=0.7, maxiters=200, kernel_size=7)
outputs_pgd = net(inputs_pgd)
loss = criterion(outputs_pgd, targets)
test_loss += loss.item()
_, predicted = outputs_pgd.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
epsilons[predicted == targets] = -1
all_epsilons.append(epsilons)
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d) | Avg epsilon: %.3f'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total, torch.cat(all_epsilons).float().mean().item()))
acc = 100.*correct/total
torch.save((acc, torch.cat(all_epsilons)), save_name)
test()
test_attack()