forked from sigsep/sigsep-mus-eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_boxplots.py
61 lines (53 loc) · 1.24 KB
/
create_boxplots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
import museval
comparisons = museval.MethodsStore()
comparisons.add_sisec18()
agg_df = comparisons.agg_frames_scores()
sns.set()
sns.set_context("notebook")
metrics = ['SDR']
selected_targets = ['vocals', 'drums', 'bass', 'other']
oracles = [
'IBM1', 'IBM2', 'IRM1', 'IRM2', 'MWF', 'IMSK'
]
# Convert to Pandas Dataframes
agg_df['oracle'] = agg_df.method.isin(oracles)
agg_df = agg_df[agg_df.target.isin(selected_targets)].dropna()
# Get sorting keys (sorted by median of SDR:vocals)
df_sort_by = agg_df[
(agg_df.metric == "SDR") &
(agg_df.target == "vocals")
]
methods_by_sdr = df_sort_by.score.groupby(
df_sort_by.method
).median().sort_values().index.tolist()
# df = df[df.target == "vocals"]
g = sns.FacetGrid(
agg_df,
row="target",
col="metric",
row_order=selected_targets,
col_order=metrics,
size=4,
sharex=False,
aspect=3
)
g = (g.map(
sns.boxplot,
"score",
"method",
"oracle",
orient='h',
order=methods_by_sdr[::-1],
hue_order=[True, False],
showfliers=False,
notch=True
))
g.fig.tight_layout()
plt.subplots_adjust(hspace=0.2, wspace=0.1)
g.fig.savefig(
"boxplot.pdf",
bbox_inches='tight',
)