-
Notifications
You must be signed in to change notification settings - Fork 0
/
prez1.Rmd
125 lines (96 loc) · 2.08 KB
/
prez1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
title: "My Thirteen days at DataRobot"
author: "Yi Li"
date: "June 24, 2014"
output:
ioslides_presentation:
logo: logo4.png
beamer_presentation: default
---
## Repository Checklists
<div class="columns-2">
- LDA&QDA
- Polynomial Regression
- Kernel Smoothing
- ARMA model
- R Markdown
- Naive Bayes
![Image](logo.png)
</div>
## LDA & QDA
<div class="centered">
![Image](lda.png)
</div>
## LDA & QDA
- Classification method.
- This is my first repo, in which I wrote a lot of math.
- Thanks for **Dallin** who ask me to provide some **hand-waving** description.
<div class="centered">
![Image](handwave.gif)
</div>
## Polynomial Regression
<div class="centered">
![Image](poly.png)
</div>
## Kernel Smoothing
<div class="centered">
![Image](kernel.png)
</div>
## ARMA model
```{r echo = F, message = F, cache = F,include=FALSE}
options(RCHART_WIDTH = 600, RCHART_HEIGHT = 400)
knitr::opts_chunk$set(comment = NA, results ='asis', tidy = F, message = F)
```
```{r fig0, echo=FALSE}
require(rCharts)
n = 100
# Simulate the AR(1) model
x1 = 0
AR1=0
for(i in -50:n){
a = rnorm(1)
x1 = 0.5*x1+a
if(i>1)
AR1[i]=x1
}
# Simulate the MA(2) model
x1=0
a2=0
a3=0
MA2=0
for(i in -50:n){
a1=rnorm(1)
x1=a1+0.65*a2+0.24*a3
a3=a2
a2=a1
if(i>0)
MA2[i]=x1
}
# Plot the two series
Time=1:n
myTS=data.frame(Time,AR1,MA2)
m1 <- mPlot(x="Time", y = c("AR1","MA2"), type = 'Line', data = myTS ,parseTime=FALSE)
m1$set(pointSize = 0, lineWidth = 1)
m1$print('fig0', include_assets = TRUE, cdn = TRUE)
```
- Start to learn some interactive graphing package, like **rCharts**.
## R Markdown
<div class="centered">
<img src="rmd.png" height="200px"/>
</div>
- Used for creating dynamic documentation
- This presentation was made with R Markdown.
- R Markdown v2 was released last week.
## Naive Bayes
After struggling with Python for two days...
<div class="centered">
<img src="python.png" />
</div>
## Naive Bayes
I finished my first python program
<img src="ipnb.png" height="400px"/>
---
<div class="centered">
Thank you all for your help!
<img src="logo4.png" height="400px"/>
</div>