forked from bcaffo/Caffo-Coursera
-
Notifications
You must be signed in to change notification settings - Fork 0
/
randomFormula.tex
182 lines (154 loc) · 3.41 KB
/
randomFormula.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
\documentclass[aspectratio=169]{beamer}
\mode<presentation>
\usetheme{Hannover}
\useoutertheme{sidebar}
\usecolortheme{dolphin}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumerate}
%some bold math symbosl
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\brho}{\boldsymbol{\rho}}
\newcommand{\bSigma}{\boldsymbol{\Sigma}}
\newcommand{\btheta}{\boldsymbol{\theta}}
\newcommand{\bbeta}{\boldsymbol{\beta}}
\newcommand{\bmu}{\boldsymbol{\mu}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\bH}{\mathbf{H}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bolde}{\mathbf{e}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\cpp}[1]{\texttt{#1}}
\title{Mathematical Biostatistics Boot Camp: Random Formulae}
\author{Brian Caffo}
\date{\today}
\institute[Department of Biostatistics]{
Department of Biostatistics \\
Johns Hopkins Bloomberg School of Public Health\\
Johns Hopkins University
}
\begin{document}
\frame{\titlepage}
%\section{Table of contents}
\frame{
\frametitle{Table of contents}
\tableofcontents
}
\section{About this document}
\begin{frame}
This document contains random formulae images I used in the notes.
\end{frame}
\begin{frame}
$$A = \{1, 2\}$$
$$B = \{1, 2, 3\}$$
\end{frame}
\begin{frame}
\begin{eqnarray}
E[X^2] & = & \int_0^1 x^2 dx \\
& = & \left. \frac{x^3}{3} \right|_0^1 = \frac{1}{3}
\end{eqnarray}
\end{frame}
\begin{frame}
$$\frac{|x - \mu|}{k\sigma} > 1$$
Over the set $\{x : |x - \mu | > k\sigma\}$ \\
$$\frac{(x - \mu)^2}{k^2\sigma^2} > 1$$
$$\frac{1}{k^2\sigma^2} \int_{-\infty}^\infty (x - \mu)^2 f(x) dx$$
$$\frac{1}{k^2\sigma^2} E[(X - \mu)^2] = \frac{1}{k^2\sigma^2} \Var(X)$$
\end{frame}
\begin{frame}
$$P(A_1 \cup A_2 \cup A_3) = P\{A_1 \cup (A_2 \cup A_3)\} = P(A_1) + P(A_2 \cup A_3)$$
$$P(A_1) + P(A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$
\end{frame}
\begin{frame}
$$P(\cup_{i=1}^n E_i) = P\left\{E_n \cup \left(\cup_{i=1}^{n-1} E_i \right) \right\}$$
\end{frame}
\begin{frame}
$$
(x_1, x_2, x_3, x_4) = (1, 0, 1, 1)
$$
$$
p^{(1 + 0 + 1 + 1)}(1 - p)^{\{4 - (1 + 0 + 1 + 1)\}} = p^3 (1 - p)^1
$$
$$
\mathrm{SD}(X) \mathrm{SD}(Y)
$$
$$
\Var(X)
$$
$$
\Var(X) = E[X^2] - E[X]^2 \rightarrow E[X^2] = \Var(X) + E[X]^2 = \sigma^2 + \mu^2
$$
$$
\Var(\bar X) = E[\bar X^2] - E[\bar X]^2 \rightarrow E[\bar X^2] = \Var(\bar X) + E[\bar X]^2 = \sigma^2/n + \mu^2
$$
$$
f(x | y = 5) = \frac{f_{xy}(x, 5)}{f_y(5)}
$$
\end{frame}
\begin{frame}
$$
P(A\cap B)
$$
$$
P(A)
$$
$$
P(A\cap B^c)
$$
\end{frame}
\begin{frame}
$$
\frac{10!}{1!9!} = \frac{10\times 9 \times 8 \times \ldots \times 1}{9 \times 8 \times \ldots \times 1} = 10
$$
$$
\frac{10!}{2!8!} = \frac{10\times 9 \times 8 \times \ldots \times 1}{2 \times 1 \times 8 \times 7 \times \ldots \times 1} = 45
$$
In general
$$
\left(
\begin{array}{c}
n \\ 2
\end{array}
\right)
=
\frac{n \times (n - 1)}{2}
$$
$$
\mu
$$
$$
\sigma^2
$$
$$
E[Z] = E\left[\frac{X - \mu}{\sigma} \right] = \frac{E[X] - \mu}{\sigma} = 0
$$
\end{frame}
\begin{frame}
$$
\Var(Z) = \Var\left(\frac{X - \mu}{\sigma}\right) = \frac{1}{\sigma^2} \Var(X - \mu) = \frac{1}{\sigma^2} \Var(X) = 1
$$
\end{frame}
\begin{frame}
$$
E[X_i^2] = E[Y_i] = \sigma^2 + \mu^2
$$
$$
\sum_{i=1}^n (X_i - \bar X)^2 = \sum_{i=1}^2 X_i^2 - n \bar X ^ 2
$$
\end{frame}
\begin{frame}
$$
E[\chi^2_{df}] = df
$$
$$
E[S^2] = \sigma^2
\rightarrow
E\left[\frac{(n-1)S^2}{\sigma^2}\right] = (n-1)
$$
$$
\Var(\chi^2_{df}) = 2df
$$
\end{frame}
\end{document}