forked from G-Wang/Real-Time-Voice-Cloning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_toolbox.py
33 lines (28 loc) · 1.6 KB
/
demo_toolbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from pathlib import Path
from toolbox import Toolbox
from utils.argutils import print_args
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Runs the toolbox",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("-d", "--datasets_root", type=Path, help= \
"Path to the directory containing your datasets. See toolbox/__init__.py for a list of "
"supported datasets. You can add your own data by created a directory named UserAudio "
"in your datasets root. Supported formats are mp3, flac, wav and m4a. Each speaker should "
"be inside a directory, e.g. <datasets_root>/UserAudio/speaker_01/audio_01.wav.",
default=None)
parser.add_argument("-e", "--enc_models_dir", type=Path, default="encoder/saved_models",
help="Directory containing saved encoder models")
parser.add_argument("-s", "--syn_models_dir", type=Path, default="synthesizer/saved_models",
help="Directory containing saved synthesizer models")
parser.add_argument("-v", "--voc_models_dir", type=Path, default="vocoder/saved_models",
help="Directory containing saved vocoder models")
parser.add_argument("--low_mem", action="store_true", help=\
"If True, the memory used by the synthesizer will be freed after each use. Adds large "
"overhead but allows to save some GPU memory for lower-end GPUs.")
args = parser.parse_args()
# Launch the toolbox
print_args(args, parser)
Toolbox(**vars(args))