-
Notifications
You must be signed in to change notification settings - Fork 60
/
wcbert_modeling.py
597 lines (499 loc) · 23.5 KB
/
wcbert_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# -*- coding: utf-8 -*-
# @Time : 2020/11/30 12:47
# @Author : liuwei
# @File : wcbert_modeling.py
"""
implement of LEBERT
"""
import math
import os
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.activations import gelu, gelu_new, ACT2FN
from transformers.configuration_bert import BertConfig
from module.crf import CRF
from module.bilstm import BiLSTM
from transformers.modeling_utils import (
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from transformers.modeling_bert import BertAttention, BertIntermediate, BertOutput, load_tf_weights_in_bert, BertModel
BertLayerNorm = torch.nn.LayerNorm
from function.utils import gather_indexes
class BertEmbeddings(nn.Module):
"""
Construct the embeddingns fron word, position and token_type, boundary embeddings
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, boundary_ids=None, inputs_embeds=None):
"""
here we add a boundary information
boundary_ids: [batch_size, seq_length, boundary_size]
boundary_mask: filter some boubdary information
"""
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertLayer(nn.Module):
"""
we modify the module to add word embedding information into the transformer
"""
def __init__(self, config, has_word_attn=False):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BertAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
self.crossattention = BertAttention(config)
## here we add a attention for matched word
self.has_word_attn = has_word_attn
if self.has_word_attn:
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.act = nn.Tanh()
self.word_transform = nn.Linear(config.word_embed_dim, config.hidden_size)
self.word_word_weight = nn.Linear(config.hidden_size, config.hidden_size)
attn_W = torch.zeros(config.hidden_size, config.hidden_size)
self.attn_W = nn.Parameter(attn_W)
self.attn_W.data.normal_(mean=0.0, std=config.initializer_range)
self.fuse_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
input_word_embeddings=None,
input_word_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False
):
"""
code refer to: https://github.com/huggingface/transformers/blob/master/src/transformers/modeling_bert.py
N: batch_size
L: seq length
W: word size
D: word_embedding dim
Args:
input_word_embedding: [N, L, W, D]
input_word_mask: [N, L, W]
"""
## 1.character contextual representation
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0] # this is the contextual representation
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# decode need join attention from the outputs
if self.is_decoder and encoder_hidden_states is not None:
assert hasattr(
self, "crossattention"
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
if self.has_word_attn:
assert input_word_mask is not None
# transform
word_outputs = self.word_transform(input_word_embeddings) # [N, L, W, D]
word_outputs = self.act(word_outputs)
word_outputs = self.word_word_weight(word_outputs)
word_outputs = self.dropout(word_outputs)
# attention_output = attention_output.unsqueeze(2) # [N, L, D] -> [N, L, 1, D]
alpha = torch.matmul(layer_output.unsqueeze(2), self.attn_W) # [N, L, 1, D]
alpha = torch.matmul(alpha, torch.transpose(word_outputs, 2, 3)) # [N, L, 1, W]
alpha = alpha.squeeze() # [N, L, W]
alpha = alpha + (1 - input_word_mask.float()) * (-10000.0)
alpha = torch.nn.Softmax(dim=-1)(alpha) # [N, L, W]
alpha = alpha.unsqueeze(-1) # [N, L, W, 1]
weighted_word_embedding = torch.sum(word_outputs * alpha, dim=2) # [N, L, D]
layer_output = layer_output + weighted_word_embedding
layer_output = self.dropout(layer_output)
layer_output = self.fuse_layernorm(layer_output)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.add_layers = config.add_layers
total_layers = []
for i in range(config.num_hidden_layers):
if i in self.add_layers:
total_layers.append(BertLayer(config, True))
else:
total_layers.append(BertLayer(config, False))
self.layer = nn.ModuleList(total_layers)
def forward(
self,
hidden_states,
attention_mask=None,
input_word_embeddings=None,
input_word_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=False,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# print("Layer 0: \n")
# print(hidden_states)
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if getattr(self.config, "gradient_checkpointing", False):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
input_word_embeddings,
input_word_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
input_word_embeddings,
input_word_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
# print("Layer %d: \n"%(i+1))
# print(hidden_states)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = BertConfig
load_tf_weights = load_tf_weights_in_bert
base_model_prefix = "bert"
authorized_missing_keys = [r"position_ids"]
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding, nn.Parameter)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
class WCBertModel(BertPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super(WCBertModel, self).__init__(config)
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
matched_word_embeddings=None,
matched_word_mask=None,
boundary_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the model is configured as a decoder.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
batch_size: N
seq_length: L
dim: D
word_num: W
boundary_num: B
Args:
input_ids: [N, L]
attention_mask: [N, L]
boundary_ids: [N, L, B]
boundary_mask: [N, L, B]
matched_word_embeddings: [B, L, W, D]
matched_word_mask: [B, L, W]
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
boundary_ids=boundary_ids, inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
input_word_embeddings=matched_word_embeddings,
input_word_mask=matched_word_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class WCBertCRFForTokenClassification(BertPreTrainedModel):
def __init__(self, config, pretrained_embeddings, num_labels):
super().__init__(config)
word_vocab_size = pretrained_embeddings.shape[0]
embed_dim = pretrained_embeddings.shape[1]
self.word_embeddings = nn.Embedding(word_vocab_size, embed_dim)
self.bert = WCBertModel(config)
self.dropout = nn.Dropout(config.HP_dropout)
self.num_labels = num_labels
self.hidden2tag = nn.Linear(config.hidden_size, num_labels + 2)
self.crf = CRF(num_labels, torch.cuda.is_available())
self.init_weights()
## init the embedding
self.word_embeddings.weight.data.copy_(torch.from_numpy(pretrained_embeddings))
print("Load pretrained embedding from file.........")
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
matched_word_ids=None,
matched_word_mask=None,
boundary_ids=None,
labels=None,
flag="Train"
):
matched_word_embeddings = self.word_embeddings(matched_word_ids)
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
matched_word_embeddings=matched_word_embeddings,
matched_word_mask=matched_word_mask,
boundary_ids=boundary_ids
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.hidden2tag(sequence_output)
if flag == 'Train':
assert labels is not None
loss = self.crf.neg_log_likelihood_loss(logits, attention_mask, labels)
_, preds = self.crf._viterbi_decode(logits, attention_mask)
return (loss, preds)
elif flag == 'Predict':
_, preds = self.crf._viterbi_decode(logits, attention_mask)
return (preds,)
class BertWordLSTMCRFForTokenClassification(BertPreTrainedModel):
"""
model-level fusion baseline
concat bert vector with attention weighted sum word embedding
and then input to LSTM-CRF
"""
def __init__(self, config, pretrained_embeddings, num_labels):
super().__init__(config)
word_vocab_size = pretrained_embeddings.shape[0]
embed_dim = pretrained_embeddings.shape[1]
self.word_embeddings = nn.Embedding(word_vocab_size, embed_dim)
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.HP_dropout)
self.act = nn.Tanh()
self.word_transform = nn.Linear(config.word_embed_dim, config.hidden_size)
self.word_word_weight = nn.Linear(config.hidden_size, config.hidden_size)
self.bilstm = BiLSTM(config.hidden_size * 2, config.lstm_size, config.HP_dropout)
attn_W = torch.zeros(config.hidden_size, config.hidden_size)
self.attn_W = nn.Parameter(attn_W)
self.attn_W.data.normal_(mean=0.0, std=config.initializer_range)
self.num_labels = num_labels
self.hidden2tag = nn.Linear(config.lstm_size * 2, num_labels + 2)
self.crf = CRF(num_labels, torch.cuda.is_available())
self.init_weights()
## init the embedding
self.word_embeddings.weight.data.copy_(torch.from_numpy(pretrained_embeddings))
print("Load pretrained embedding from file.........")
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
matched_word_ids=None,
matched_word_mask=None,
boundary_ids=None,
labels=None,
flag="Train"
):
matched_word_embeddings = self.word_embeddings(matched_word_ids)
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids
)
sequence_output = outputs[0]
matched_word_embeddings = self.word_transform(matched_word_embeddings)
matched_word_embeddings = self.act(matched_word_embeddings)
matched_word_embeddings = self.word_word_weight(matched_word_embeddings)
matched_word_embeddings = self.dropout(matched_word_embeddings)
alpha = torch.matmul(sequence_output.unsqueeze(2), self.attn_W) # [N, L, 1, D]
alpha = torch.matmul(alpha, torch.transpose(matched_word_embeddings, 2, 3)) # [N, L, 1, W]
alpha = alpha.squeeze() # [N, L, W]
alpha = alpha + (1 - matched_word_mask.float()) * (-2 ** 31 + 1)
alpha = torch.nn.Softmax(dim=-1)(alpha) # [N, L, W]
alpha = alpha.unsqueeze(-1) # [N, L, W, 1]
matched_word_embeddings = torch.sum(matched_word_embeddings * alpha, dim=2) # [N, L, D]
## concat the embedding [B, L, N, D], [B, L, N]
sequence_output = torch.cat((sequence_output, matched_word_embeddings), dim=-1)
sequence_output = self.dropout(sequence_output)
lstm_output = self.bilstm(sequence_output, attention_mask)
logits = self.hidden2tag(lstm_output)
if flag == 'Train':
assert labels is not None
loss = self.crf.neg_log_likelihood_loss(logits, attention_mask, labels)
_, preds = self.crf._viterbi_decode(logits, attention_mask)
return (loss, preds)
elif flag == 'Predict':
_, preds = self.crf._viterbi_decode(logits, attention_mask)
return (preds,)