Skip to content

Latest commit

 

History

History
190 lines (142 loc) · 5.13 KB

README.md

File metadata and controls

190 lines (142 loc) · 5.13 KB

TensorFlow Requirement: 1.x TensorFlow 2 Not Supported

vid2depth

Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints

Reza Mahjourian, Martin Wicke, Anelia Angelova

CVPR 2018

Project website: https://sites.google.com/view/vid2depth

ArXiv: https://arxiv.org/pdf/1802.05522.pdf

1. Installation

Requirements

Python Packages

mkvirtualenv venv  # Optionally create a virtual environment.
pip install absl-py
pip install matplotlib
pip install numpy
pip install scipy
pip install tensorflow

For building the ICP op (work in progress)

Download vid2depth

git clone --depth 1 https://github.com/tensorflow/models.git

2. Datasets

Download KITTI dataset (174GB)

mkdir -p ~/vid2depth/kitti-raw-uncompressed
cd ~/vid2depth/kitti-raw-uncompressed
wget https://raw.githubusercontent.com/mrharicot/monodepth/master/utils/kitti_archives_to_download.txt
wget -i kitti_archives_to_download.txt
unzip "*.zip"

Download Cityscapes dataset (110GB) (optional)

You will need to register in order to download the data. Download the following files:

  • leftImg8bit_sequence_trainvaltest.zip
  • camera_trainvaltest.zip

Download Bike dataset (17GB) (optional)

mkdir -p ~/vid2depth/bike-uncompressed
cd ~/vid2depth/bike-uncompressed
wget https://storage.googleapis.com/brain-robotics-data/bike/BikeVideoDataset.tar
tar xvf BikeVideoDataset.tar

3. Inference

Download trained model

mkdir -p ~/vid2depth/trained-model
cd ~/vid2depth/trained-model
wget https://storage.cloud.google.com/vid2depth/model/model-119496.zip
unzip model-119496.zip

Run inference

cd tensorflow/models/research/vid2depth
python inference.py \
  --kitti_dir ~/vid2depth/kitti-raw-uncompressed \
  --output_dir ~/vid2depth/inference \
  --kitti_video 2011_09_26/2011_09_26_drive_0009_sync \
  --model_ckpt ~/vid2depth/trained-model/model-119496

4. Training

Prepare KITTI training sequences

# Prepare training sequences.
cd tensorflow/models/research/vid2depth
python dataset/gen_data.py \
  --dataset_name kitti_raw_eigen \
  --dataset_dir ~/vid2depth/kitti-raw-uncompressed \
  --data_dir ~/vid2depth/data/kitti_raw_eigen \
  --seq_length 3

Prepare Cityscapes training sequences (optional)

# Prepare training sequences.
cd tensorflow/models/research/vid2depth
python dataset/gen_data.py \
  --dataset_name cityscapes \
  --dataset_dir ~/vid2depth/cityscapes-uncompressed \
  --data_dir ~/vid2depth/data/cityscapes \
  --seq_length 3

Prepare Bike training sequences (optional)

# Prepare training sequences.
cd tensorflow/models/research/vid2depth
python dataset/gen_data.py \
  --dataset_name bike \
  --dataset_dir ~/vid2depth/bike-uncompressed \
  --data_dir ~/vid2depth/data/bike \
  --seq_length 3

Compile the ICP op (work in progress)

The ICP op depends on multiple software packages (TensorFlow, Point Cloud Library, FLANN, Boost, HDF5). The Bazel build system requires individual BUILD files for each of these packages. We have included a partial implementation of these BUILD files inside the third_party directory. But they are not ready for compiling the op. If you manage to build the op, please let us know so we can include your contribution.

cd tensorflow/models/research/vid2depth
bazel build ops:pcl_demo  # Build test program using PCL only.
bazel build ops:icp_op.so

For the time being, it is possible to run inference on the pre-trained model and run training without the icp loss.

Run training

# Train
cd tensorflow/models/research/vid2depth
python train.py \
  --data_dir ~/vid2depth/data/kitti_raw_eigen \
  --seq_length 3 \
  --reconstr_weight 0.85 \
  --smooth_weight 0.05 \
  --ssim_weight 0.15 \
  --icp_weight 0 \
  --checkpoint_dir ~/vid2depth/checkpoints

Reference

If you find our work useful in your research please consider citing our paper:

@inproceedings{mahjourian2018unsupervised,
  title={Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints},
    author={Mahjourian, Reza and Wicke, Martin and Angelova, Anelia},
    booktitle = {CVPR},
    year={2018}
}

Contact

To ask questions or report issues please open an issue on the tensorflow/models issues tracker. Please assign issues to @rezama.

Credits

This implementation is derived from SfMLearner by Tinghui Zhou.