forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
export_inference_graph.py
162 lines (128 loc) · 5.8 KB
/
export_inference_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Saves out a GraphDef containing the architecture of the model.
To use it, run something like this, with a model name defined by slim:
bazel build tensorflow_models/research/slim:export_inference_graph
bazel-bin/tensorflow_models/research/slim/export_inference_graph \
--model_name=inception_v3 --output_file=/tmp/inception_v3_inf_graph.pb
If you then want to use the resulting model with your own or pretrained
checkpoints as part of a mobile model, you can run freeze_graph to get a graph
def with the variables inlined as constants using:
bazel build tensorflow/python/tools:freeze_graph
bazel-bin/tensorflow/python/tools/freeze_graph \
--input_graph=/tmp/inception_v3_inf_graph.pb \
--input_checkpoint=/tmp/checkpoints/inception_v3.ckpt \
--input_binary=true --output_graph=/tmp/frozen_inception_v3.pb \
--output_node_names=InceptionV3/Predictions/Reshape_1
The output node names will vary depending on the model, but you can inspect and
estimate them using the summarize_graph tool:
bazel build tensorflow/tools/graph_transforms:summarize_graph
bazel-bin/tensorflow/tools/graph_transforms/summarize_graph \
--in_graph=/tmp/inception_v3_inf_graph.pb
To run the resulting graph in C++, you can look at the label_image sample code:
bazel build tensorflow/examples/label_image:label_image
bazel-bin/tensorflow/examples/label_image/label_image \
--image=${HOME}/Pictures/flowers.jpg \
--input_layer=input \
--output_layer=InceptionV3/Predictions/Reshape_1 \
--graph=/tmp/frozen_inception_v3.pb \
--labels=/tmp/imagenet_slim_labels.txt \
--input_mean=0 \
--input_std=255
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow.compat.v1 as tf
from tensorflow.contrib import quantize as contrib_quantize
from tensorflow.python.platform import gfile
from datasets import dataset_factory
from nets import nets_factory
tf.app.flags.DEFINE_string(
'model_name', 'inception_v3', 'The name of the architecture to save.')
tf.app.flags.DEFINE_boolean(
'is_training', False,
'Whether to save out a training-focused version of the model.')
tf.app.flags.DEFINE_integer(
'image_size', None,
'The image size to use, otherwise use the model default_image_size.')
tf.app.flags.DEFINE_integer(
'batch_size', None,
'Batch size for the exported model. Defaulted to "None" so batch size can '
'be specified at model runtime.')
tf.app.flags.DEFINE_string('dataset_name', 'imagenet',
'The name of the dataset to use with the model.')
tf.app.flags.DEFINE_integer(
'labels_offset', 0,
'An offset for the labels in the dataset. This flag is primarily used to '
'evaluate the VGG and ResNet architectures which do not use a background '
'class for the ImageNet dataset.')
tf.app.flags.DEFINE_string(
'output_file', '', 'Where to save the resulting file to.')
tf.app.flags.DEFINE_string(
'dataset_dir', '', 'Directory to save intermediate dataset files to')
tf.app.flags.DEFINE_bool(
'quantize', False, 'whether to use quantized graph or not.')
tf.app.flags.DEFINE_bool(
'is_video_model', False, 'whether to use 5-D inputs for video model.')
tf.app.flags.DEFINE_integer(
'num_frames', None,
'The number of frames to use. Only used if is_video_model is True.')
tf.app.flags.DEFINE_bool('write_text_graphdef', False,
'Whether to write a text version of graphdef.')
tf.app.flags.DEFINE_bool('use_grayscale', False,
'Whether to convert input images to grayscale.')
FLAGS = tf.app.flags.FLAGS
def main(_):
if not FLAGS.output_file:
raise ValueError('You must supply the path to save to with --output_file')
if FLAGS.is_video_model and not FLAGS.num_frames:
raise ValueError(
'Number of frames must be specified for video models with --num_frames')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default() as graph:
dataset = dataset_factory.get_dataset(FLAGS.dataset_name, 'train',
FLAGS.dataset_dir)
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=(dataset.num_classes - FLAGS.labels_offset),
is_training=FLAGS.is_training)
image_size = FLAGS.image_size or network_fn.default_image_size
num_channels = 1 if FLAGS.use_grayscale else 3
if FLAGS.is_video_model:
input_shape = [
FLAGS.batch_size, FLAGS.num_frames, image_size, image_size,
num_channels
]
else:
input_shape = [FLAGS.batch_size, image_size, image_size, num_channels]
placeholder = tf.placeholder(name='input', dtype=tf.float32,
shape=input_shape)
network_fn(placeholder)
if FLAGS.quantize:
contrib_quantize.create_eval_graph()
graph_def = graph.as_graph_def()
if FLAGS.write_text_graphdef:
tf.io.write_graph(
graph_def,
os.path.dirname(FLAGS.output_file),
os.path.basename(FLAGS.output_file),
as_text=True)
else:
with gfile.GFile(FLAGS.output_file, 'wb') as f:
f.write(graph_def.SerializeToString())
if __name__ == '__main__':
tf.app.run()