forked from emdodds/DictLearner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
StimSet.py
388 lines (338 loc) · 16 KB
/
StimSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 20 18:23:08 2015
@author: Eric Dodds
"""
import numpy as np
# try/except block gets around an issue on the cluster
try:
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
except ImportError:
print("Plotting unavailable.")
class StimSet(object):
def __init__(self, data, stimshape, batch_size=None):
"""Notice that stimshape and the length of a datum may be different, since the
data may be represented in a reduced form."""
self.data = data
self.stimshape = stimshape
self.stimsize = np.prod(stimshape)
self.nstims = data.shape[0]
self.datasize = data.shape[1]
self.batch_size = batch_size
def rand_stim(self, batch_size=None):
"""Select random inputs. Return an array of batch_size columns,
each of which is an input represented as a (column) vector. """
batch_size = batch_size or self.batch_size
veclength = np.prod(self.datasize)
X = np.zeros((veclength, batch_size))
for i in range(batch_size):
which = np.random.randint(self.nstims)
vec = self.data[which, ...]
if len(vec.shape) > 1:
vec = vec.reshape(self.stimsize)
X[:, i] = vec
return X
@staticmethod
def _stimarray(stims, stimshape, layout='sqrt'):
"""Returns an array of the stimuli reshaped to 2d and tiled."""
length, height = stimshape
assert length*height == stims.shape[1]
buf = 1 # buffer pixels between stimuli
nstim = stims.shape[0]
# n and m are respectively the numbers of rows and columns of stimuli in the array
n, m = StimSet._get_layout(nstim, length, height, layout)
array = 0.5*np.ones((buf+n*(length+buf), buf+m*(height+buf)))
k = 0
for i in range(m):
for j in range(n):
if k < nstim:
normfactor = np.max(np.abs(stims[k, :]))
hstart = buf+i*(height+buf)
lstart = buf+j*(length+buf)
thestim = stims[k, :].reshape(length, height)/normfactor
array[lstart:lstart+length, hstart:hstart+height] = thestim
k = k+1
return array.T
@staticmethod
def _get_layout(nstim, length=None, height=None, layout='square'):
"""Get a number of rows n and columns m corresponding to a given
layout type. Returns the argument if it's already a pair."""
if layout == 'square':
if np.floor(np.sqrt(nstim))**2 != nstim:
n = int(np.ceil(np.sqrt(nstim/2.)))
m = int(np.ceil(nstim/n))
else:
# M is a perfect square
m = int(np.sqrt(nstim))
n = m
elif layout == 'sqrt':
# if length != height, partly account for this so stimuli aren't so distorted.
# could remove the extra square root to fully accommodate
n = int(np.sqrt(nstim*np.sqrt(height/length)))
m = int(np.ceil(nstim/n))
else:
n, m = layout
return n, m
def stimarray(self, stims, stimshape=None, layout='sqrt'):
stimshape = stimshape or self.stimshape
return StimSet._stimarray(stims, stimshape, layout)
def modspec(self, elem):
"""Compute the modulation power spectrum."""
image = elem.reshape(self.stimshape)
fourier = np.fft.rfft2(image)
mid = int(fourier.shape[0]/2)
power = np.abs(fourier)**2
avgmag = np.array([(power[ii] + power[-ii])/2 for ii in range(mid)])
return avgmag
def stim_for_display(self, stim):
return stim.reshape(self.stimshape)
def tiledplot(self, stims, cmap='RdBu_r', layout='square',
aspect='auto', savestr=None):
nstim = stims.shape[0]
length, height = self.stimshape
n, m = StimSet._get_layout(nstim, length, height, layout)
gs = gridspec.GridSpec(m, n, wspace=0.0, hspace=0.0)
for ii in range(m):
for jj in range(n):
ax = plt.subplot(gs[ii, jj])
index = ii*n + jj
if index < nstim:
image = self.stim_for_display(stims[index])
image /= np.max(np.abs(image))
ax.imshow(image.T,
cmap=cmap, origin='lower', aspect=aspect,
interpolation='nearest',
clim=(-1.0, 1.0))
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
if savestr is not None:
plt.savefig(savestr, bbox_inches='tight')
class ImageSet(StimSet):
"""Container for image data. The 'stimuli' are patches drawn randomly from
the set of images."""
def __init__(self, data, stimshape=(16, 16), batch_size=None,
buffer=20, patchwisenorm=False):
self.buffer = buffer
self.patchwisenorm = patchwisenorm
StimSet.__init__(self, data, stimshape, batch_size)
self.datasize = np.prod(stimshape) # size of a patch
def rand_stim(self, stimshape=None, batch_size=None):
"""
Select random patches from the image data. Returns data array of
batch_size columns, each of which is an unrolled image patch of size
prod(stimshape).
"""
batch_size = batch_size or self.batch_size or 100
length, height = stimshape or self.stimshape
# extract subimages at random from images array to make data array X
X = np.zeros((length*height, batch_size))
for i in range(batch_size):
which = np.random.randint(self.data.shape[-1])
nrows, ncols = self.data[:, :, which].shape
row = self.buffer + int(np.ceil((nrows-length-2*self.buffer)*np.random.rand()))
col = self.buffer + int(np.ceil((nrows-height-2*self.buffer)*np.random.rand()))
animage = self.data[row:row+length,
col:col+height,
which]
animage = animage.reshape(self.stimsize)
if self.patchwisenorm:
# normalize image
animage -= animage.mean()
animage /= animage.std()
X[:, i] = animage
return X
class PCvecSet(StimSet):
"""Principal component vector representations of arbitrary data."""
def __init__(self, data, stimshape, pca, batch_size=None):
self.pca = pca
self.datasize = data.shape[1]
StimSet.__init__(self, data, stimshape, batch_size)
def stimarray(self, stims, layout='sqrt'):
reconst = self.pca.inverse_transform(stims)
return StimSet.stimarray(self, reconst, self.stimshape, layout)
def modspec(self, elem):
return StimSet.modspec(self, self.pca.inverse_transform(elem))
def stim_for_display(self, stim):
return StimSet.stim_for_display(self, self.pca.inverse_transform(stim))
class SpectroPCSet(PCvecSet):
"""A PCvecSet with some extra functionality specifically for spectrograms."""
def __init__(self, data, stimshape, pca, batch_size=None,
freqs=None, tbin_width=None):
"""
Parameters:
freqs : array_like of the frequencies sampled, in Hz
tbin_width : time in ms separating centers of adjacent time bins
"""
# spectrogram parameters default to those in Carlson, Ming, & DeWeese 2012
self.tbin_width = tbin_width or 8
self.freqs = freqs or np.logspace(2, np.log10(16000/4), 256)
PCvecSet.__init__(self, data, stimshape, pca, batch_size)
def show_stim(self, stim, cmap='RdBu_r', savestr=None, cbar=False):
reshaped = self.stim_for_display(stim)
tlength, nfreqs = self.stimshape
vmax = np.max(reshaped)
plt.imshow(reshaped.T, interpolation='nearest',
cmap=cmap, aspect='auto', origin='lower',
vmin=-vmax, vmax=vmax)
plt.ylabel('Frequency')
plt.xlabel('Time (ms, bin = '+str(self.tbin_width)+' ms)')
middlef = str(int(self.freqs[int(nfreqs/2)]))
middlet = str(int(self.tbin_width*(tlength+1)/2))
endtime = (tlength + 2)*self.tbin_width
plt.xticks([0, int(tlength/2)+1, tlength-1], ['0', middlet, endtime])
plt.yticks([0, int(nfreqs/2), nfreqs-1],
[str(self.freqs[0])+' Hz', middlef+' Hz', str(int(self.freqs[-1]/1000)) + ' kHz'])
if cbar:
plt.colorbar()
if savestr is not None:
plt.savefig(savestr, bbox_inches='tight')
plt.show()
def show_set(self, stims, cmap='RdBu_r', layout=(4, 5), savestr=None):
"""
Parameters:
stims : (number of stim, flattened stim length) stimuli to plot
layout : (number of rows, number of columns) per figure
"""
tlength, nfreqs = self.stimshape
per_figure = np.prod(layout)
nstim = stims.shape[0]
plt.figure()
for ii in range(nstim):
if ii % per_figure == 0 and ii > 0:
if savestr is not None:
plt.tight_layout()
plt.subplots_adjust(wspace=.05, hspace=.05)
plt.savefig(savestr+str(int(ii/per_figure)), bbox_inches='tight')
plt.figure()
plt.subplot(layout[0], layout[1], (ii % per_figure)+1)
plt.imshow(self.stim_for_display(stims[ii]).T, interpolation='nearest',
cmap=cmap, aspect='auto', origin='lower')
if ii % per_figure == per_figure - layout[1]:
# label axes for bottom left example
plt.ylabel('Frequency')
plt.xlabel('Time (ms, bin = '+str(self.tbin_width/2)+' ms)')
middlef = str(int(self.freqs[len(self.freqs)/2]))
middlet = str(int(self.tbin_width/2*(tlength+1)/2))
endtime = str(int((tlength + 2)*self.tbin_width/2))
plt.xticks([0, int(tlength/2)+1, tlength-1], ['0', middlet, endtime])
plt.yticks([0, int(nfreqs/2), nfreqs-1],
[str(int(self.freqs[0]))+' Hz', middlef+' Hz', str(int(self.freqs[-1]/1000))+ ' kHz'])
else:
plt.gca().get_yaxis().set_visible(False)
plt.gca().get_xaxis().set_visible(False)
plt.tight_layout()
plt.subplots_adjust(wspace=.05, hspace=.05)
if savestr is not None:
plt.savefig(savestr, bbox_inches='tight')
plt.show()
class WaveformSet(StimSet):
"""1D signals, especially audio, of uniform length."""
def tiledplot(self, stims):
"""Tiled plots of the given stumili. Zeroth index is over stimuli.
Kind of slow, expect about 10s for 100 plots."""
nstim = stims.shape[0]
plotrows = int(np.sqrt(nstim))
plotcols = int(np.ceil(nstim/plotrows))
f, axes = plt.subplots(plotrows, plotcols, sharex=True, sharey=True)
for ii in range(nstim):
axes.flatten()[ii].plot(stims[ii])
f.subplots_adjust(hspace=0, wspace=0)
plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=False)
plt.setp([a.get_yticklabels() for a in f.axes[:-1]], visible=False)
class WaveformPCSet(PCvecSet, WaveformSet):
"""Specifically for PCA reps of waveforms, i.e., 1D time series."""
def tiledplot(self, stims):
WaveformSet.tiledplot(self, self.pca.inverse_transform(stims))
class ToySparseSet(StimSet):
"""Gaussian sources linearly mixed by laplacian coefficients,
optiohally with isotropic gaussian noise added."""
def __init__(self, dim=200, nsource=None, scale=1,
nonneg=False, nstims=300000, rng=None,
batch_size=100, white=False, noise=0,
mean_center=True, ksparse=None):
"""
Parameters:
----------
dim: (int) dimensionality of data
nsource: (int) number of sources
scale: (float) scale of laplacians,
only relevant relative to noise scale
nonneg: if True, draw from exponential instead of laplace
nstims: (int) number of data to generate
rng: (int) random seed, default 912017
batch_size: (int) default batch size for rand_stim
white: if True, PCA-whiten after generation
noise: (float) scale of gaussian noise
mean_center: if True, center data after generation
ksparse: (int or None) number of sources generating each datum
"""
self.stimshape = [dim]
self.stimsize = dim
self.nstims = nstims
self.batch_size = batch_size
self.datasize = dim
if rng is None:
rng = np.random.RandomState(912017)
self.rng = rng
# generate data
if nsource is None:
nsource = dim
self.sources = rng.normal(size=(nsource, dim))
self.sources /= np.linalg.norm(self.sources, axis=1, keepdims=True)
self.scale = scale
coefficients = rng.laplace(scale=self.scale, size=(self.nstims, nsource))
self.nonneg = nonneg
if self.nonneg:
coefficients = np.abs(coefficients)
if ksparse is not None:
ktrues = np.array([True]*ksparse + [False]*(nsource - ksparse))
mask = [np.random.permutation(ktrues) for _ in range(nstims)]
mask = np.vstack(mask)
coefficients[~mask] = 0
self.data = coefficients.dot(self.sources)
if noise > 0:
self.data += rng.normal(scale=noise, size=self.data.shape)
if mean_center:
self.data -= self.data.mean(0, keepdims=True)
self.white = white
if white:
self.whiten()
stddev = self.data.std(0, keepdims=True)
self.data /= stddev
self.sparsity_parameter = noise**2 / stddev.mean()
def test_fit(self, model):
"""Given a model for the sources, calculate a distance metric from
true sources. The metric is the median of the normalized dot products
between each true source and the closest model source."""
fit = model/np.linalg.norm(model, axis=1, keepdims=True)
if self.white:
sources = self.sources.dot(self.zca_matrix)
sources /= np.linalg.norm(sources, axis=1, keepdims=True)
else:
sources = self.sources
allthedots = sources.dot(fit.T)
# how close is the closest model source to each true source?
bestfits = np.max(np.abs(allthedots), axis=1)
return np.median(bestfits)
def whiten(self, blocks=20000, eps=0.0001):
"""Assumes self.data already created, mean 0."""
cov = np.zeros([self.datasize, self.datasize])
nblocks = int(np.ceil(self.nstims / blocks))
for ind in range(nblocks):
X = self.data[blocks*ind:blocks*(ind+1)]
cov += X.T.dot(X)
eigvals, eigvecs = np.linalg.eigh(cov)
if np.any(np.isnan(eigvals)):
print('Warning: some nan eigenvalues found, replacing with small numbers.')
eigvals[np.isnan(eigvals)] = 0.9 * eps**2
if np.any(eigvals < 0):
print('Warning: some negative eigenvalues of covariance matrix found. Replacing with small numbers.')
eigvals[eigvals < 0] = 0.9 * eps**2
idx = np.argsort(eigvals)
svals = np.sqrt(eigvals[idx][::-1])
eigvecs = eigvecs[idx][::-1]
# do ZCA whitening
wm = np.diag(1./np.maximum(svals, eps))
self.zca_matrix = eigvecs.T.dot(wm).dot(eigvecs)
self.data = self.data.dot(self.zca_matrix)