forked from zpppy/seq2seq-chinese-textsum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq2seq_attn.py
1216 lines (1089 loc) · 55.4 KB
/
seq2seq_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Library for creating sequence-to-sequence models in TensorFlow.
Sequence-to-sequence recurrent neural networks can learn complex functions
that map input sequences to output sequences. These models yield very good
results on a number of tasks, such as speech recognition, parsing, machine
translation, or even constructing automated replies to emails.
Before using this module, it is recommended to read the TensorFlow tutorial
on sequence-to-sequence models. It explains the basic concepts of this module
and shows an end-to-end example of how to build a translation model.
https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html
Here is an overview of functions available in this module. They all use
a very similar interface, so after reading the above tutorial and using
one of them, others should be easy to substitute.
* Full sequence-to-sequence models.
- basic_rnn_seq2seq: The most basic RNN-RNN model.
- tied_rnn_seq2seq: The basic model with tied encoder and decoder weights.
- embedding_rnn_seq2seq: The basic model with input embedding.
- embedding_tied_rnn_seq2seq: The tied model with input embedding.
- embedding_attention_seq2seq: Advanced model with input embedding and
the neural attention mechanism; recommended for complex tasks.
* Multi-task sequence-to-sequence models.
- one2many_rnn_seq2seq: The embedding model with multiple decoders.
* Decoders (when you write your own encoder, you can use these to decode;
e.g., if you want to write a model that generates captions for images).
- rnn_decoder: The basic decoder based on a pure RNN.
- attention_decoder: A decoder that uses the attention mechanism.
* Losses.
- sequence_loss: Loss for a sequence model returning average log-perplexity.
- sequence_loss_by_example: As above, but not averaging over all examples.
* model_with_buckets: A convenience function to create models with bucketing
(see the tutorial above for an explanation of why and how to use it).
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# We disable pylint because we need python3 compatibility.
from six.moves import xrange # pylint: disable=redefined-builtin
from six.moves import zip # pylint: disable=redefined-builtin
from tensorflow.contrib.rnn.python.ops import core_rnn
from tensorflow.contrib.rnn.python.ops import core_rnn_cell
from tensorflow.contrib.rnn.python.ops import core_rnn_cell_impl
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.util import nest
# TODO(ebrevdo): Remove once _linear is fully deprecated.
linear = core_rnn_cell_impl._linear # pylint: disable=protected-access
def _extract_argmax_and_embed(embedding,
output_projection=None,
update_embedding=True):
"""Get a loop_function that extracts the previous symbol and embeds it.
Args:
embedding: embedding tensor for symbols.
output_projection: None or a pair (W, B). If provided, each fed previous
output will first be multiplied by W and added B.
update_embedding: Boolean; if False, the gradients will not propagate
through the embeddings.
Returns:
A loop function.
"""
def loop_function(prev, _):
if output_projection is not None:
prev = nn_ops.xw_plus_b(prev, output_projection[0], output_projection[1])
prev_symbol = math_ops.argmax(prev, 1)
# Note that gradients will not propagate through the second parameter of
# embedding_lookup.
emb_prev = embedding_ops.embedding_lookup(embedding, prev_symbol)
if not update_embedding:
emb_prev = array_ops.stop_gradient(emb_prev)
return emb_prev
return loop_function
def rnn_decoder(decoder_inputs,
initial_state,
cell,
loop_function=None,
scope=None):
"""RNN decoder for the sequence-to-sequence model.
Args:
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
initial_state: 2D Tensor with shape [batch_size x cell.state_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to the i-th output
in order to generate the i+1-st input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol). This can be used for decoding,
but also for training to emulate http://arxiv.org/abs/1506.03099.
Signature -- loop_function(prev, i) = next
* prev is a 2D Tensor of shape [batch_size x output_size],
* i is an integer, the step number (when advanced control is needed),
* next is a 2D Tensor of shape [batch_size x input_size].
scope: VariableScope for the created subgraph; defaults to "rnn_decoder".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing generated outputs.
state: The state of each cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
(Note that in some cases, like basic RNN cell or GRU cell, outputs and
states can be the same. They are different for LSTM cells though.)
"""
with variable_scope.variable_scope(scope or "rnn_decoder"):
state = initial_state
outputs = []
prev = None
for i, inp in enumerate(decoder_inputs):
if loop_function is not None and prev is not None:
with variable_scope.variable_scope("loop_function", reuse=True):
inp = loop_function(prev, i)
if i > 0:
variable_scope.get_variable_scope().reuse_variables()
output, state = cell(inp, state)
outputs.append(output)
if loop_function is not None:
prev = output
return outputs, state
def basic_rnn_seq2seq(encoder_inputs,
decoder_inputs,
cell,
dtype=dtypes.float32,
scope=None):
"""Basic RNN sequence-to-sequence model.
This model first runs an RNN to encode encoder_inputs into a state vector,
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell type, but don't share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
_, enc_state = core_rnn.static_rnn(cell, encoder_inputs, dtype=dtype)
return rnn_decoder(decoder_inputs, enc_state, cell)
def tied_rnn_seq2seq(encoder_inputs,
decoder_inputs,
cell,
loop_function=None,
dtype=dtypes.float32,
scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = core_rnn.static_rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(
decoder_inputs,
enc_state,
cell,
loop_function=loop_function,
scope=scope)
def embedding_rnn_decoder(decoder_inputs,
initial_state,
cell,
num_symbols,
embedding_size,
output_projection=None,
feed_previous=False,
update_embedding_for_previous=True,
scope=None):
"""RNN decoder with embedding and a pure-decoding option.
Args:
decoder_inputs: A list of 1D batch-sized int32 Tensors (decoder inputs).
initial_state: 2D Tensor [batch_size x cell.state_size].
cell: core_rnn_cell.RNNCell defining the cell function.
num_symbols: Integer, how many symbols come into the embedding.
embedding_size: Integer, the length of the embedding vector for each symbol.
output_projection: None or a pair (W, B) of output projection weights and
biases; W has shape [output_size x num_symbols] and B has
shape [num_symbols]; if provided and feed_previous=True, each fed
previous output will first be multiplied by W and added B.
feed_previous: Boolean; if True, only the first of decoder_inputs will be
used (the "GO" symbol), and all other decoder inputs will be generated by:
next = embedding_lookup(embedding, argmax(previous_output)),
In effect, this implements a greedy decoder. It can also be used
during training to emulate http://arxiv.org/abs/1506.03099.
If False, decoder_inputs are used as given (the standard decoder case).
update_embedding_for_previous: Boolean; if False and feed_previous=True,
only the embedding for the first symbol of decoder_inputs (the "GO"
symbol) will be updated by back propagation. Embeddings for the symbols
generated from the decoder itself remain unchanged. This parameter has
no effect if feed_previous=False.
scope: VariableScope for the created subgraph; defaults to
"embedding_rnn_decoder".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors. The
output is of shape [batch_size x cell.output_size] when
output_projection is not None (and represents the dense representation
of predicted tokens). It is of shape [batch_size x num_decoder_symbols]
when output_projection is None.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
Raises:
ValueError: When output_projection has the wrong shape.
"""
with variable_scope.variable_scope(scope or "embedding_rnn_decoder") as scope:
if output_projection is not None:
dtype = scope.dtype
proj_weights = ops.convert_to_tensor(output_projection[0], dtype=dtype)
proj_weights.get_shape().assert_is_compatible_with([None, num_symbols])
proj_biases = ops.convert_to_tensor(output_projection[1], dtype=dtype)
proj_biases.get_shape().assert_is_compatible_with([num_symbols])
embedding = variable_scope.get_variable("embedding",
[num_symbols, embedding_size])
loop_function = _extract_argmax_and_embed(
embedding, output_projection,
update_embedding_for_previous) if feed_previous else None
emb_inp = (embedding_ops.embedding_lookup(embedding, i)
for i in decoder_inputs)
return rnn_decoder(
emb_inp, initial_state, cell, loop_function=loop_function)
def embedding_rnn_seq2seq(encoder_inputs,
decoder_inputs,
cell,
num_encoder_symbols,
num_decoder_symbols,
embedding_size,
output_projection=None,
feed_previous=False,
dtype=None,
scope=None):
"""Embedding RNN sequence-to-sequence model.
This model first embeds encoder_inputs by a newly created embedding (of shape
[num_encoder_symbols x input_size]). Then it runs an RNN to encode
embedded encoder_inputs into a state vector. Next, it embeds decoder_inputs
by another newly created embedding (of shape [num_decoder_symbols x
input_size]). Then it runs RNN decoder, initialized with the last
encoder state, on embedded decoder_inputs.
Args:
encoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
decoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
num_encoder_symbols: Integer; number of symbols on the encoder side.
num_decoder_symbols: Integer; number of symbols on the decoder side.
embedding_size: Integer, the length of the embedding vector for each symbol.
output_projection: None or a pair (W, B) of output projection weights and
biases; W has shape [output_size x num_decoder_symbols] and B has
shape [num_decoder_symbols]; if provided and feed_previous=True, each
fed previous output will first be multiplied by W and added B.
feed_previous: Boolean or scalar Boolean Tensor; if True, only the first
of decoder_inputs will be used (the "GO" symbol), and all other decoder
inputs will be taken from previous outputs (as in embedding_rnn_decoder).
If False, decoder_inputs are used as given (the standard decoder case).
dtype: The dtype of the initial state for both the encoder and encoder
rnn cells (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to
"embedding_rnn_seq2seq"
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors. The
output is of shape [batch_size x cell.output_size] when
output_projection is not None (and represents the dense representation
of predicted tokens). It is of shape [batch_size x num_decoder_symbols]
when output_projection is None.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope(scope or "embedding_rnn_seq2seq") as scope:
if dtype is not None:
scope.set_dtype(dtype)
else:
dtype = scope.dtype
# Encoder.
encoder_cell = core_rnn_cell.EmbeddingWrapper(
cell,
embedding_classes=num_encoder_symbols,
embedding_size=embedding_size)
_, encoder_state = core_rnn.static_rnn(
encoder_cell, encoder_inputs, dtype=dtype)
# Decoder.
if output_projection is None:
cell = core_rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
if isinstance(feed_previous, bool):
return embedding_rnn_decoder(
decoder_inputs,
encoder_state,
cell,
num_decoder_symbols,
embedding_size,
output_projection=output_projection,
feed_previous=feed_previous)
# If feed_previous is a Tensor, we construct 2 graphs and use cond.
def decoder(feed_previous_bool):
reuse = None if feed_previous_bool else True
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=reuse) as scope:
outputs, state = embedding_rnn_decoder(
decoder_inputs,
encoder_state,
cell,
num_decoder_symbols,
embedding_size,
output_projection=output_projection,
feed_previous=feed_previous_bool,
update_embedding_for_previous=False)
state_list = [state]
if nest.is_sequence(state):
state_list = nest.flatten(state)
return outputs + state_list
outputs_and_state = control_flow_ops.cond(feed_previous,
lambda: decoder(True),
lambda: decoder(False))
outputs_len = len(decoder_inputs) # Outputs length same as decoder inputs.
state_list = outputs_and_state[outputs_len:]
state = state_list[0]
if nest.is_sequence(encoder_state):
state = nest.pack_sequence_as(
structure=encoder_state, flat_sequence=state_list)
return outputs_and_state[:outputs_len], state
def embedding_tied_rnn_seq2seq(encoder_inputs,
decoder_inputs,
cell,
num_symbols,
embedding_size,
num_decoder_symbols=None,
output_projection=None,
feed_previous=False,
dtype=None,
scope=None):
"""Embedding RNN sequence-to-sequence model with tied (shared) parameters.
This model first embeds encoder_inputs by a newly created embedding (of shape
[num_symbols x input_size]). Then it runs an RNN to encode embedded
encoder_inputs into a state vector. Next, it embeds decoder_inputs using
the same embedding. Then it runs RNN decoder, initialized with the last
encoder state, on embedded decoder_inputs. The decoder output is over symbols
from 0 to num_decoder_symbols - 1 if num_decoder_symbols is none; otherwise it
is over 0 to num_symbols - 1.
Args:
encoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
decoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
num_symbols: Integer; number of symbols for both encoder and decoder.
embedding_size: Integer, the length of the embedding vector for each symbol.
num_decoder_symbols: Integer; number of output symbols for decoder. If
provided, the decoder output is over symbols 0 to num_decoder_symbols - 1.
Otherwise, decoder output is over symbols 0 to num_symbols - 1. Note that
this assumes that the vocabulary is set up such that the first
num_decoder_symbols of num_symbols are part of decoding.
output_projection: None or a pair (W, B) of output projection weights and
biases; W has shape [output_size x num_symbols] and B has
shape [num_symbols]; if provided and feed_previous=True, each
fed previous output will first be multiplied by W and added B.
feed_previous: Boolean or scalar Boolean Tensor; if True, only the first
of decoder_inputs will be used (the "GO" symbol), and all other decoder
inputs will be taken from previous outputs (as in embedding_rnn_decoder).
If False, decoder_inputs are used as given (the standard decoder case).
dtype: The dtype to use for the initial RNN states (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to
"embedding_tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_symbols] containing the generated
outputs where output_symbols = num_decoder_symbols if
num_decoder_symbols is not None otherwise output_symbols = num_symbols.
state: The state of each decoder cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
Raises:
ValueError: When output_projection has the wrong shape.
"""
with variable_scope.variable_scope(
scope or "embedding_tied_rnn_seq2seq", dtype=dtype) as scope:
dtype = scope.dtype
if output_projection is not None:
proj_weights = ops.convert_to_tensor(output_projection[0], dtype=dtype)
proj_weights.get_shape().assert_is_compatible_with([None, num_symbols])
proj_biases = ops.convert_to_tensor(output_projection[1], dtype=dtype)
proj_biases.get_shape().assert_is_compatible_with([num_symbols])
embedding = variable_scope.get_variable(
"embedding", [num_symbols, embedding_size], dtype=dtype)
emb_encoder_inputs = [
embedding_ops.embedding_lookup(embedding, x) for x in encoder_inputs
]
emb_decoder_inputs = [
embedding_ops.embedding_lookup(embedding, x) for x in decoder_inputs
]
output_symbols = num_symbols
if num_decoder_symbols is not None:
output_symbols = num_decoder_symbols
if output_projection is None:
cell = core_rnn_cell.OutputProjectionWrapper(cell, output_symbols)
if isinstance(feed_previous, bool):
loop_function = _extract_argmax_and_embed(embedding, output_projection,
True) if feed_previous else None
return tied_rnn_seq2seq(
emb_encoder_inputs,
emb_decoder_inputs,
cell,
loop_function=loop_function,
dtype=dtype)
# If feed_previous is a Tensor, we construct 2 graphs and use cond.
def decoder(feed_previous_bool):
loop_function = _extract_argmax_and_embed(
embedding, output_projection, False) if feed_previous_bool else None
reuse = None if feed_previous_bool else True
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=reuse):
outputs, state = tied_rnn_seq2seq(
emb_encoder_inputs,
emb_decoder_inputs,
cell,
loop_function=loop_function,
dtype=dtype)
state_list = [state]
if nest.is_sequence(state):
state_list = nest.flatten(state)
return outputs + state_list
outputs_and_state = control_flow_ops.cond(feed_previous,
lambda: decoder(True),
lambda: decoder(False))
outputs_len = len(decoder_inputs) # Outputs length same as decoder inputs.
state_list = outputs_and_state[outputs_len:]
state = state_list[0]
# Calculate zero-state to know it's structure.
static_batch_size = encoder_inputs[0].get_shape()[0]
for inp in encoder_inputs[1:]:
static_batch_size.merge_with(inp.get_shape()[0])
batch_size = static_batch_size.value
if batch_size is None:
batch_size = array_ops.shape(encoder_inputs[0])[0]
zero_state = cell.zero_state(batch_size, dtype)
if nest.is_sequence(zero_state):
state = nest.pack_sequence_as(
structure=zero_state, flat_sequence=state_list)
return outputs_and_state[:outputs_len], state
def attention_decoder(decoder_inputs,
initial_state,
attention_states,
cell,
output_size=None,
num_heads=1,
loop_function=None,
dtype=None,
scope=None,
initial_state_attention=False):
"""RNN decoder with attention for the sequence-to-sequence model.
In this context "attention" means that, during decoding, the RNN can look up
information in the additional tensor attention_states, and it does this by
focusing on a few entries from the tensor. This model has proven to yield
especially good results in a number of sequence-to-sequence tasks. This
implementation is based on http://arxiv.org/abs/1412.7449 (see below for
details). It is recommended for complex sequence-to-sequence tasks.
Args:
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
initial_state: 2D Tensor [batch_size x cell.state_size].
attention_states: 3D Tensor [batch_size x attn_length x attn_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
output_size: Size of the output vectors; if None, we use cell.output_size.
num_heads: Number of attention heads that read from attention_states.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol). This can be used for decoding,
but also for training to emulate http://arxiv.org/abs/1506.03099.
Signature -- loop_function(prev, i) = next
* prev is a 2D Tensor of shape [batch_size x output_size],
* i is an integer, the step number (when advanced control is needed),
* next is a 2D Tensor of shape [batch_size x input_size].
dtype: The dtype to use for the RNN initial state (default: tf.float32).
scope: VariableScope for the created subgraph; default: "attention_decoder".
initial_state_attention: If False (default), initial attentions are zero.
If True, initialize the attentions from the initial state and attention
states -- useful when we wish to resume decoding from a previously
stored decoder state and attention states.
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors of
shape [batch_size x output_size]. These represent the generated outputs.
Output i is computed from input i (which is either the i-th element
of decoder_inputs or loop_function(output {i-1}, i)) as follows.
First, we run the cell on a combination of the input and previous
attention masks:
cell_output, new_state = cell(linear(input, prev_attn), prev_state).
Then, we calculate new attention masks:
new_attn = softmax(V^T * tanh(W * attention_states + U * new_state))
and then we calculate the output:
output = linear(cell_output, new_attn).
state: The state of each decoder cell the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
Raises:
ValueError: when num_heads is not positive, there are no inputs, shapes
of attention_states are not set, or input size cannot be inferred
from the input.
"""
if not decoder_inputs:
raise ValueError("Must provide at least 1 input to attention decoder.")
if num_heads < 1:
raise ValueError("With less than 1 heads, use a non-attention decoder.")
if attention_states.get_shape()[2].value is None:
raise ValueError("Shape[2] of attention_states must be known: %s" %
attention_states.get_shape())
if output_size is None:
output_size = cell.output_size
with variable_scope.variable_scope(
scope or "attention_decoder", dtype=dtype) as scope:
dtype = scope.dtype
batch_size = array_ops.shape(decoder_inputs[0])[0] # Needed for reshaping.
attn_length = attention_states.get_shape()[1].value
if attn_length is None:
attn_length = array_ops.shape(attention_states)[1]
attn_size = attention_states.get_shape()[2].value
# To calculate W1 * h_t we use a 1-by-1 convolution, need to reshape before.
hidden = array_ops.reshape(attention_states,
[-1, attn_length, 1, attn_size])
hidden_features = []
v = []
attention_vec_size = attn_size # Size of query vectors for attention.
for a in xrange(num_heads):
k = variable_scope.get_variable("AttnW_%d" % a,
[1, 1, attn_size, attention_vec_size])
hidden_features.append(nn_ops.conv2d(hidden, k, [1, 1, 1, 1], "SAME"))
v.append(
variable_scope.get_variable("AttnV_%d" % a, [attention_vec_size]))
state = initial_state
def attention(query):
"""Put attention masks on hidden using hidden_features and query."""
ds = [] # Results of attention reads will be stored here.
if nest.is_sequence(query): # If the query is a tuple, flatten it.
query_list = nest.flatten(query)
for q in query_list: # Check that ndims == 2 if specified.
ndims = q.get_shape().ndims
if ndims:
assert ndims == 2
query = array_ops.concat(query_list, 1)
for a in xrange(num_heads):
with variable_scope.variable_scope("Attention_%d" % a):
y = linear(query, attention_vec_size, True)
y = array_ops.reshape(y, [-1, 1, 1, attention_vec_size])
# Attention mask is a softmax of v^T * tanh(...).
s = math_ops.reduce_sum(v[a] * math_ops.tanh(hidden_features[a] + y),
[2, 3])
a = nn_ops.softmax(s)
# Now calculate the attention-weighted vector d.
d = math_ops.reduce_sum(
array_ops.reshape(a, [-1, attn_length, 1, 1]) * hidden, [1, 2])
ds.append(array_ops.reshape(d, [-1, attn_size]))
# Modified: return ds, a
return ds, a
outputs = []
prev = None
batch_attn_size = array_ops.stack([batch_size, attn_size])
attns = [
array_ops.zeros(
batch_attn_size, dtype=dtype) for _ in xrange(num_heads)
]
for a in attns: # Ensure the second shape of attention vectors is set.
a.set_shape([None, attn_size])
if initial_state_attention:
attns, attn_mask = attention(initial_state)
# Modified: Adding attn_masks: list of 2D array with shape [batch_size, tx]
# tx is the length of input sequence encoder
attn_masks = []
for i, inp in enumerate(decoder_inputs):
if i > 0:
variable_scope.get_variable_scope().reuse_variables()
# If loop_function is set, we use it instead of decoder_inputs.
if loop_function is not None and prev is not None:
with variable_scope.variable_scope("loop_function", reuse=True):
inp = loop_function(prev, i)
# Merge input and previous attentions into one vector of the right size.
input_size = inp.get_shape().with_rank(2)[1]
if input_size.value is None:
raise ValueError("Could not infer input size from input: %s" % inp.name)
x = linear([inp] + attns, input_size, True)
# Run the RNN.
cell_output, state = cell(x, state)
# Run the attention mechanism.
if i == 0 and initial_state_attention:
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=True):
attns, attn_mask = attention(state)
else:
attns, attn_mask = attention(state)
# Append attn_mask
attn_masks.append(attn_mask)
with variable_scope.variable_scope("AttnOutputProjection"):
output = linear([cell_output] + attns, output_size, True)
if loop_function is not None:
prev = output
outputs.append(output)
return outputs, state, attn_masks
def embedding_attention_decoder(decoder_inputs,
initial_state,
attention_states,
cell,
num_symbols,
embedding_size,
num_heads=1,
output_size=None,
output_projection=None,
feed_previous=False,
update_embedding_for_previous=True,
dtype=None,
scope=None,
initial_state_attention=False):
"""RNN decoder with embedding and attention and a pure-decoding option.
Args:
decoder_inputs: A list of 1D batch-sized int32 Tensors (decoder inputs).
initial_state: 2D Tensor [batch_size x cell.state_size].
attention_states: 3D Tensor [batch_size x attn_length x attn_size].
cell: core_rnn_cell.RNNCell defining the cell function.
num_symbols: Integer, how many symbols come into the embedding.
embedding_size: Integer, the length of the embedding vector for each symbol.
num_heads: Number of attention heads that read from attention_states.
output_size: Size of the output vectors; if None, use output_size.
output_projection: None or a pair (W, B) of output projection weights and
biases; W has shape [output_size x num_symbols] and B has shape
[num_symbols]; if provided and feed_previous=True, each fed previous
output will first be multiplied by W and added B.
feed_previous: Boolean; if True, only the first of decoder_inputs will be
used (the "GO" symbol), and all other decoder inputs will be generated by:
next = embedding_lookup(embedding, argmax(previous_output)),
In effect, this implements a greedy decoder. It can also be used
during training to emulate http://arxiv.org/abs/1506.03099.
If False, decoder_inputs are used as given (the standard decoder case).
update_embedding_for_previous: Boolean; if False and feed_previous=True,
only the embedding for the first symbol of decoder_inputs (the "GO"
symbol) will be updated by back propagation. Embeddings for the symbols
generated from the decoder itself remain unchanged. This parameter has
no effect if feed_previous=False.
dtype: The dtype to use for the RNN initial states (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to
"embedding_attention_decoder".
initial_state_attention: If False (default), initial attentions are zero.
If True, initialize the attentions from the initial state and attention
states -- useful when we wish to resume decoding from a previously
stored decoder state and attention states.
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
Raises:
ValueError: When output_projection has the wrong shape.
"""
if output_size is None:
output_size = cell.output_size
if output_projection is not None:
proj_biases = ops.convert_to_tensor(output_projection[1], dtype=dtype)
proj_biases.get_shape().assert_is_compatible_with([num_symbols])
with variable_scope.variable_scope(
scope or "embedding_attention_decoder", dtype=dtype) as scope:
embedding = variable_scope.get_variable("embedding",
[num_symbols, embedding_size])
loop_function = _extract_argmax_and_embed(
embedding, output_projection,
update_embedding_for_previous) if feed_previous else None
emb_inp = [
embedding_ops.embedding_lookup(embedding, i) for i in decoder_inputs
]
return attention_decoder(
emb_inp,
initial_state,
attention_states,
cell,
output_size=output_size,
num_heads=num_heads,
loop_function=loop_function,
initial_state_attention=initial_state_attention)
def embedding_attention_seq2seq(encoder_inputs,
decoder_inputs,
cell,
num_encoder_symbols,
num_decoder_symbols,
embedding_size,
num_heads=1,
output_projection=None,
feed_previous=False,
dtype=None,
scope=None,
initial_state_attention=False):
"""Embedding sequence-to-sequence model with attention.
This model first embeds encoder_inputs by a newly created embedding (of shape
[num_encoder_symbols x input_size]). Then it runs an RNN to encode
embedded encoder_inputs into a state vector. It keeps the outputs of this
RNN at every step to use for attention later. Next, it embeds decoder_inputs
by another newly created embedding (of shape [num_decoder_symbols x
input_size]). Then it runs attention decoder, initialized with the last
encoder state, on embedded decoder_inputs and attending to encoder outputs.
Warning: when output_projection is None, the size of the attention vectors
and variables will be made proportional to num_decoder_symbols, can be large.
Args:
encoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
decoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
cell: core_rnn_cell.RNNCell defining the cell function and size.
num_encoder_symbols: Integer; number of symbols on the encoder side.
num_decoder_symbols: Integer; number of symbols on the decoder side.
embedding_size: Integer, the length of the embedding vector for each symbol.
num_heads: Number of attention heads that read from attention_states.
output_projection: None or a pair (W, B) of output projection weights and
biases; W has shape [output_size x num_decoder_symbols] and B has
shape [num_decoder_symbols]; if provided and feed_previous=True, each
fed previous output will first be multiplied by W and added B.
feed_previous: Boolean or scalar Boolean Tensor; if True, only the first
of decoder_inputs will be used (the "GO" symbol), and all other decoder
inputs will be taken from previous outputs (as in embedding_rnn_decoder).
If False, decoder_inputs are used as given (the standard decoder case).
dtype: The dtype of the initial RNN state (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to
"embedding_attention_seq2seq".
initial_state_attention: If False (default), initial attentions are zero.
If True, initialize the attentions from the initial state and attention
states.
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x num_decoder_symbols] containing the generated
outputs.
state: The state of each decoder cell at the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope(
scope or "embedding_attention_seq2seq", dtype=dtype) as scope:
dtype = scope.dtype
# Encoder.
encoder_cell = core_rnn_cell.EmbeddingWrapper(
cell,
embedding_classes=num_encoder_symbols,
embedding_size=embedding_size)
encoder_outputs, encoder_state = core_rnn.static_rnn(
encoder_cell, encoder_inputs, dtype=dtype)
# First calculate a concatenation of encoder outputs to put attention on.
top_states = [
array_ops.reshape(e, [-1, 1, cell.output_size]) for e in encoder_outputs
]
attention_states = array_ops.concat(top_states, 1)
# Decoder.
output_size = None
if output_projection is None:
cell = core_rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
output_size = num_decoder_symbols
if isinstance(feed_previous, bool):
return embedding_attention_decoder(
decoder_inputs,
encoder_state,
attention_states,
cell,
num_decoder_symbols,
embedding_size,
num_heads=num_heads,
output_size=output_size,
output_projection=output_projection,
feed_previous=feed_previous,
initial_state_attention=initial_state_attention)
# If feed_previous is a Tensor, we construct 2 graphs and use cond.
def decoder(feed_previous_bool):
reuse = None if feed_previous_bool else True
with variable_scope.variable_scope(
variable_scope.get_variable_scope(), reuse=reuse) as scope:
outputs, state, attn_mask = embedding_attention_decoder(
decoder_inputs,
encoder_state,
attention_states,
cell,
num_decoder_symbols,
embedding_size,
num_heads=num_heads,
output_size=output_size,
output_projection=output_projection,
feed_previous=feed_previous_bool,
update_embedding_for_previous=False,
initial_state_attention=initial_state_attention)
state_list = [state]
if nest.is_sequence(state):
state_list = nest.flatten(state)
return outputs + state_list
outputs_and_state = control_flow_ops.cond(feed_previous,
lambda: decoder(True),
lambda: decoder(False))
outputs_len = len(decoder_inputs) # Outputs length same as decoder inputs.
state_list = outputs_and_state[outputs_len:]
state = state_list[0]
if nest.is_sequence(encoder_state):
state = nest.pack_sequence_as(
structure=encoder_state, flat_sequence=state_list)
return outputs_and_state[:outputs_len], state
def one2many_rnn_seq2seq(encoder_inputs,
decoder_inputs_dict,
cell,
num_encoder_symbols,
num_decoder_symbols_dict,
embedding_size,
feed_previous=False,
dtype=None,
scope=None):
"""One-to-many RNN sequence-to-sequence model (multi-task).
This is a multi-task sequence-to-sequence model with one encoder and multiple
decoders. Reference to multi-task sequence-to-sequence learning can be found
here: http://arxiv.org/abs/1511.06114
Args:
encoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
decoder_inputs_dict: A dictionany mapping decoder name (string) to
the corresponding decoder_inputs; each decoder_inputs is a list of 1D
Tensors of shape [batch_size]; num_decoders is defined as
len(decoder_inputs_dict).
cell: core_rnn_cell.RNNCell defining the cell function and size.
num_encoder_symbols: Integer; number of symbols on the encoder side.
num_decoder_symbols_dict: A dictionary mapping decoder name (string) to an
integer specifying number of symbols for the corresponding decoder;
len(num_decoder_symbols_dict) must be equal to num_decoders.
embedding_size: Integer, the length of the embedding vector for each symbol.
feed_previous: Boolean or scalar Boolean Tensor; if True, only the first of
decoder_inputs will be used (the "GO" symbol), and all other decoder
inputs will be taken from previous outputs (as in embedding_rnn_decoder).
If False, decoder_inputs are used as given (the standard decoder case).
dtype: The dtype of the initial state for both the encoder and encoder
rnn cells (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to
"one2many_rnn_seq2seq"
Returns:
A tuple of the form (outputs_dict, state_dict), where:
outputs_dict: A mapping from decoder name (string) to a list of the same
length as decoder_inputs_dict[name]; each element in the list is a 2D
Tensors with shape [batch_size x num_decoder_symbol_list[name]]
containing the generated outputs.
state_dict: A mapping from decoder name (string) to the final state of the
corresponding decoder RNN; it is a 2D Tensor of shape
[batch_size x cell.state_size].
"""
outputs_dict = {}
state_dict = {}
with variable_scope.variable_scope(
scope or "one2many_rnn_seq2seq", dtype=dtype) as scope:
dtype = scope.dtype
# Encoder.
encoder_cell = core_rnn_cell.EmbeddingWrapper(
cell,
embedding_classes=num_encoder_symbols,
embedding_size=embedding_size)
_, encoder_state = core_rnn.static_rnn(
encoder_cell, encoder_inputs, dtype=dtype)
# Decoder.
for name, decoder_inputs in decoder_inputs_dict.items():
num_decoder_symbols = num_decoder_symbols_dict[name]
with variable_scope.variable_scope("one2many_decoder_" + str(
name)) as scope:
decoder_cell = core_rnn_cell.OutputProjectionWrapper(
cell, num_decoder_symbols)
if isinstance(feed_previous, bool):
outputs, state = embedding_rnn_decoder(
decoder_inputs,
encoder_state,
decoder_cell,
num_decoder_symbols,
embedding_size,
feed_previous=feed_previous)
else:
# If feed_previous is a Tensor, we construct 2 graphs and use cond.