-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict2.py
129 lines (90 loc) · 3.27 KB
/
predict2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env Python
# -*- coding: utf-8 -*-
"""A simple MNIST classifier: Predict handwriting number ---step 2
This script is based on the Tensoflow MNIST beginners tutorial
See extensive documentation for the tutorial at
https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.html
"""
#import modules
import sys
import tensorflow as tf
from PIL import Image, ImageFilter
import numpy as np
import matplotlib.pyplot as plt
def predictint(imvalue):
"""
returns a predicted integer.
"""
# Define the model (same as when creating the model file)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "/mnt/hgfs/share/tensorflow-example-master/SAVE3/model.ckpt")
print ("Model restored.")
prediction=tf.argmax(y_conv,1)
return prediction.eval(feed_dict={x: imvalue ,keep_prob: 1.0}, session=sess)
def imageprepare(argv):
"""
This function returns a numpy values.
"""
im = Image.open(argv).convert('L')
print(im)
img = im.resize((28, 28), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
print(img)
data = img.getdata()
data = np.matrix(data,dtype="float")
data = (255.0 - data) / 255.0
# print (data)
# print(data)
new_data = np.reshape(data, (1, 28 * 28))
# plt.imshow(im)
# plt.show()
return new_data
def main(argv=None):
"""
Main function.
"""
path = "/mnt/hgfs/share/tensorflow-example-master/0.png"
im = Image.open(path).convert('L')
plt.imshow(im)
plt.show()
# plt.close()
imvalue = imageprepare(path)
imvalue = np.array(imvalue)
print("imvalue.shape:",imvalue.shape)
print("----------------------------")
predint = predictint(imvalue)
# print(predint)
print ("result:",predint[0])
if __name__ == "__main__":
main()