Skip to content

Latest commit

 

History

History

TensorRTPlugin

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Build Process TensorRT Custom plugin

TensorRT OSS build is required. This is required because TensorRT TRT_EfficientNMSX plugin that are required by models and not in the general TensorRT release.

New plugin

Downloading TensorRT Build

  1. Download TensorRT OSS

    cd TensorRTPlugin
    git clone -b release/8.6 https://github.com/levipereira/TensorRT TensorRT
    cd TensorRT
    git submodule update --init --recursive

Setting Up The Build Environment

For Linux platforms, we recommend that you generate a docker container for building TensorRT OSS as described below.

  1. Generate the TensorRT-OSS build container.

    The TensorRT-OSS build container can be generated using the supplied Dockerfiles and build scripts. The build containers are configured for building TensorRT OSS out-of-the-box.

    Ubuntu 20.04 on x86-64 with cuda-12.1 (DeepStream 7.0)

    ./docker/build.sh --file docker/ubuntu-20.04.Dockerfile --tag tensorrt-ubuntu20.04-cuda12.1

    Example: Ubuntu 20.04 cross-compile for Jetson (aarch64) with cuda-11.4.2 (JetPack SDK)

    ./docker/build.sh --file docker/ubuntu-cross-aarch64.Dockerfile --tag tensorrt-jetpack-cuda11.4

    Example: Ubuntu 20.04 on aarch64 with cuda-11.8

    ./docker/build.sh --file docker/ubuntu-20.04-aarch64.Dockerfile --tag tensorrt-aarch64-ubuntu20.04-cuda11.8 --cuda 11.8.0
  2. Launch the TensorRT-OSS build container.

    Example: Ubuntu 20.04 build container

    ./docker/launch.sh --tag tensorrt-ubuntu20.04-cuda12.1 --gpus all

    NOTE:
    sudo password for Ubuntu build containers is nvidia.

Building TensorRT-OSS

  • Generate Makefiles and build.

    Example: Linux (x86-64) build with default cuda-12.1 - DeepStream 7.0

     cd $TRT_OSSPATH
     mkdir -p build && cd build
     cmake .. -DTRT_LIB_DIR=$TRT_LIBPATH -DTRT_OUT_DIR=`pwd`/out
     make -j$(nproc)

    Example: Linux (aarch64) build with default cuda-12.1

     cd $TRT_OSSPATH
     mkdir -p build && cd build
     cmake .. -DTRT_LIB_DIR=$TRT_LIBPATH -DTRT_OUT_DIR=`pwd`/out -DCMAKE_TOOLCHAIN_FILE=$TRT_OSSPATH/cmake/toolchains/cmake_aarch64-native.toolchain
     make -j$(nproc)

NOTE:

  • Required CMake build arguments are:
    • TRT_LIB_DIR: Path to the TensorRT installation directory containing libraries.
    • TRT_OUT_DIR: Output directory where generated build artifacts will be copied.
  • Optional CMake build arguments:
    • GPU_ARCHS: GPU (SM) architectures to target. By default we generate CUDA code for all major SMs. Specific SM versions can be specified here as a quoted space-separated list to reduce compilation time and binary size. Table of compute capabilities of NVIDIA GPUs can be found here. Examples:
      • NVidia A100: -DGPU_ARCHS="80"
      • Tesla T4, GeForce RTX 2080: -DGPU_ARCHS="75"
      • Titan V, Tesla V100: -DGPU_ARCHS="70"
      • Multiple SMs: -DGPU_ARCHS="80 75"

After building ends successfully, libnvinfer_plugin.so* will be generated under ${pwd}/out/.
exit from docker container to host and copy libnvinfer_plugin

## exit from container
exit
## copy lib to deepstream-yolov9/TensorRTPlugin
cp build/out/libnvinfer_plugin.so.8.6.1 ../../TensorRTPlugin/

## on this example we copied from 
# ~/deepstream-yolov9/TensorRTPlugin/TensorRT/build/out/libnvinfer_plugin.so.8.6.1  ~/deepstream-yolov9/TensorRTPlugin/

## optional to clean
## you can remove TensorRT dir
rm -rf deepstream-yolov9/TensorRTPlugin/TensorRT