We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
when I run :"python tools/test.py --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml TEST.MODEL_FILE models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth TEST.USE_GT_BBOX False" to test on COCO val2017 dataset using model zoo's models,it occurs the error: => creating output/coco/pose_hrnet/w32_256x192_adam_lr1e-3 => creating log/coco/pose_hrnet/w32_256x192_adam_lr1e-3_2022-12-07-21-01 Namespace(cfg='experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml', dataDir='', logDir='', modelDir='', opts=['TEST.MODEL_FILE', 'models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth', 'TEST.USE_GT_BBOX', 'False'], prevModelDir='') AUTO_RESUME: True CUDNN: BENCHMARK: True DETERMINISTIC: False ENABLED: True DATASET: COLOR_RGB: True DATASET: coco DATA_FORMAT: jpg FLIP: True HYBRID_JOINTS_TYPE: NUM_JOINTS_HALF_BODY: 8 PROB_HALF_BODY: 0.3 ROOT: data/coco/ ROT_FACTOR: 45 SCALE_FACTOR: 0.35 SELECT_DATA: False TEST_SET: val2017 TRAIN_SET: train2017 DATA_DIR: DEBUG: DEBUG: True SAVE_BATCH_IMAGES_GT: True SAVE_BATCH_IMAGES_PRED: True SAVE_HEATMAPS_GT: True SAVE_HEATMAPS_PRED: True GPUS: (0, 1, 2, 3) LOG_DIR: log LOSS: TOPK: 8 USE_DIFFERENT_JOINTS_WEIGHT: False USE_OHKM: False USE_TARGET_WEIGHT: True MODEL: EXTRA: FINAL_CONV_KERNEL: 1 PRETRAINED_LAYERS: ['conv1', 'bn1', 'conv2', 'bn2', 'layer1', 'transition1', 'stage2', 'transition2', 'stage3', 'transition3', 'stage4'] STAGE2: BLOCK: BASIC FUSE_METHOD: SUM NUM_BLOCKS: [4, 4] NUM_BRANCHES: 2 NUM_CHANNELS: [32, 64] NUM_MODULES: 1 STAGE3: BLOCK: BASIC FUSE_METHOD: SUM NUM_BLOCKS: [4, 4, 4] NUM_BRANCHES: 3 NUM_CHANNELS: [32, 64, 128] NUM_MODULES: 4 STAGE4: BLOCK: BASIC FUSE_METHOD: SUM NUM_BLOCKS: [4, 4, 4, 4] NUM_BRANCHES: 4 NUM_CHANNELS: [32, 64, 128, 256] NUM_MODULES: 3 HEATMAP_SIZE: [48, 64] IMAGE_SIZE: [192, 256] INIT_WEIGHTS: True NAME: pose_hrnet NUM_JOINTS: 17 PRETRAINED: models/pytorch/imagenet/hrnet_w32-36af842e.pth SIGMA: 2 TAG_PER_JOINT: True TARGET_TYPE: gaussian OUTPUT_DIR: output PIN_MEMORY: True PRINT_FREQ: 100 RANK: 0 TEST: BATCH_SIZE_PER_GPU: 32 BBOX_THRE: 1.0 COCO_BBOX_FILE: data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json FLIP_TEST: True IMAGE_THRE: 0.0 IN_VIS_THRE: 0.2 MODEL_FILE: models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth NMS_THRE: 1.0 OKS_THRE: 0.9 POST_PROCESS: True SHIFT_HEATMAP: True SOFT_NMS: False USE_GT_BBOX: False TRAIN: BATCH_SIZE_PER_GPU: 32 BEGIN_EPOCH: 0 CHECKPOINT: END_EPOCH: 210 GAMMA1: 0.99 GAMMA2: 0.0 LR: 0.001 LR_FACTOR: 0.1 LR_STEP: [170, 200] MOMENTUM: 0.9 NESTEROV: False OPTIMIZER: adam RESUME: False SHUFFLE: True WD: 0.0001 WORKERS: 24 => loading model from models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth loading annotations into memory... Done (t=0.15s) creating index... index created! => classes: ['background', 'person'] => num_images: 5000 => Total boxes: 104125 => Total boxes after fliter low [email protected]: 104125 => load 104125 samples Traceback (most recent call last): File "tools/test.py", line 130, in main() File "tools/test.py", line 125, in main validate(cfg, valid_loader, valid_dataset, model, criterion, File "/home/ycj/deep-high-resolution-net.pytorch-master/tools/../lib/core/function.py", line 118, in validate for i, (input, target, target_weight, meta) in enumerate(val_loader): File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 435, in next data = self._next_data() File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1085, in _next_data return self._process_data(data) File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1111, in _process_data data.reraise() File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/_utils.py", line 428, in reraise raise self.exc_type(msg) cv2.error: Caught error in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 198, in _worker_loop data = fetcher.fetch(index) File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/ycj/deep-high-resolution-net.pytorch-master/tools/../lib/dataset/JointsDataset.py", line 131, in getitem data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB) cv2.error: OpenCV(4.5.1) /tmp/pip-req-build-jr1ur_cf/opencv/modules/imgproc/src/color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cvtColor'
can you give some advice? thank you!
The text was updated successfully, but these errors were encountered:
Hello, have you solved this problem? I had a similar problem, thank you very much.
Sorry, something went wrong.
The same problem with #220
No branches or pull requests
when I run :"python tools/test.py
--cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml
TEST.MODEL_FILE models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth
TEST.USE_GT_BBOX False" to test on COCO val2017 dataset using model zoo's models,it occurs the error:
=> creating output/coco/pose_hrnet/w32_256x192_adam_lr1e-3
=> creating log/coco/pose_hrnet/w32_256x192_adam_lr1e-3_2022-12-07-21-01
Namespace(cfg='experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml', dataDir='', logDir='', modelDir='', opts=['TEST.MODEL_FILE', 'models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth', 'TEST.USE_GT_BBOX', 'False'], prevModelDir='')
AUTO_RESUME: True
CUDNN:
BENCHMARK: True
DETERMINISTIC: False
ENABLED: True
DATASET:
COLOR_RGB: True
DATASET: coco
DATA_FORMAT: jpg
FLIP: True
HYBRID_JOINTS_TYPE:
NUM_JOINTS_HALF_BODY: 8
PROB_HALF_BODY: 0.3
ROOT: data/coco/
ROT_FACTOR: 45
SCALE_FACTOR: 0.35
SELECT_DATA: False
TEST_SET: val2017
TRAIN_SET: train2017
DATA_DIR:
DEBUG:
DEBUG: True
SAVE_BATCH_IMAGES_GT: True
SAVE_BATCH_IMAGES_PRED: True
SAVE_HEATMAPS_GT: True
SAVE_HEATMAPS_PRED: True
GPUS: (0, 1, 2, 3)
LOG_DIR: log
LOSS:
TOPK: 8
USE_DIFFERENT_JOINTS_WEIGHT: False
USE_OHKM: False
USE_TARGET_WEIGHT: True
MODEL:
EXTRA:
FINAL_CONV_KERNEL: 1
PRETRAINED_LAYERS: ['conv1', 'bn1', 'conv2', 'bn2', 'layer1', 'transition1', 'stage2', 'transition2', 'stage3', 'transition3', 'stage4']
STAGE2:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4]
NUM_BRANCHES: 2
NUM_CHANNELS: [32, 64]
NUM_MODULES: 1
STAGE3:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4]
NUM_BRANCHES: 3
NUM_CHANNELS: [32, 64, 128]
NUM_MODULES: 4
STAGE4:
BLOCK: BASIC
FUSE_METHOD: SUM
NUM_BLOCKS: [4, 4, 4, 4]
NUM_BRANCHES: 4
NUM_CHANNELS: [32, 64, 128, 256]
NUM_MODULES: 3
HEATMAP_SIZE: [48, 64]
IMAGE_SIZE: [192, 256]
INIT_WEIGHTS: True
NAME: pose_hrnet
NUM_JOINTS: 17
PRETRAINED: models/pytorch/imagenet/hrnet_w32-36af842e.pth
SIGMA: 2
TAG_PER_JOINT: True
TARGET_TYPE: gaussian
OUTPUT_DIR: output
PIN_MEMORY: True
PRINT_FREQ: 100
RANK: 0
TEST:
BATCH_SIZE_PER_GPU: 32
BBOX_THRE: 1.0
COCO_BBOX_FILE: data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json
FLIP_TEST: True
IMAGE_THRE: 0.0
IN_VIS_THRE: 0.2
MODEL_FILE: models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth
NMS_THRE: 1.0
OKS_THRE: 0.9
POST_PROCESS: True
SHIFT_HEATMAP: True
SOFT_NMS: False
USE_GT_BBOX: False
TRAIN:
BATCH_SIZE_PER_GPU: 32
BEGIN_EPOCH: 0
CHECKPOINT:
END_EPOCH: 210
GAMMA1: 0.99
GAMMA2: 0.0
LR: 0.001
LR_FACTOR: 0.1
LR_STEP: [170, 200]
MOMENTUM: 0.9
NESTEROV: False
OPTIMIZER: adam
RESUME: False
SHUFFLE: True
WD: 0.0001
WORKERS: 24
=> loading model from models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth
loading annotations into memory...
Done (t=0.15s)
creating index...
index created!
=> classes: ['background', 'person']
=> num_images: 5000
=> Total boxes: 104125
=> Total boxes after fliter low [email protected]: 104125
=> load 104125 samples
Traceback (most recent call last):
File "tools/test.py", line 130, in
main()
File "tools/test.py", line 125, in main
validate(cfg, valid_loader, valid_dataset, model, criterion,
File "/home/ycj/deep-high-resolution-net.pytorch-master/tools/../lib/core/function.py", line 118, in validate
for i, (input, target, target_weight, meta) in enumerate(val_loader):
File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 435, in next
data = self._next_data()
File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1085, in _next_data
return self._process_data(data)
File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1111, in _process_data
data.reraise()
File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/_utils.py", line 428, in reraise
raise self.exc_type(msg)
cv2.error: Caught error in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 198, in _worker_loop
data = fetcher.fetch(index)
File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/ycj/anaconda3/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/home/ycj/deep-high-resolution-net.pytorch-master/tools/../lib/dataset/JointsDataset.py", line 131, in getitem
data_numpy = cv2.cvtColor(data_numpy, cv2.COLOR_BGR2RGB)
cv2.error: OpenCV(4.5.1) /tmp/pip-req-build-jr1ur_cf/opencv/modules/imgproc/src/color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cvtColor'
can you give some advice? thank you!
The text was updated successfully, but these errors were encountered: