We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Only reason I can think of is my cuda version is 11.7, but the latest version of PyTorch available is for cuda 11.6. Could that be the issue?
python tools/test.py \ --cfg experiments/coco/hrnet/w48_384x288_adam_lr1e-3.yaml \ TEST.MODEL_FILE models/pytorch/pose_hrnet_w48_384x288.pth \ TEST.USE_GT_BBOX False
=> creating log/coco/pose_hrnet/w48_384x288_adam_lr1e-3_2022-07-19-07-56 Namespace(cfg='experiments/coco/hrnet/w48_384x288_adam_lr1e-3.yaml', opts=['TEST.MODEL_FILE', 'models/pytorch/pose_hrnet_w48_384x288.pth', 'TEST.USE_GT_BBOX', 'False'], modelDir='', logDir='', dataDir='', prevModelDir='') AUTO_RESUME: True CUDNN: BENCHMARK: True DETERMINISTIC: False ENABLED: True DATASET: COLOR_RGB: True DATASET: coco DATA_FORMAT: jpg FLIP: True HYBRID_JOINTS_TYPE: NUM_JOINTS_HALF_BODY: 8 PROB_HALF_BODY: 0.3 ROOT: data/coco/ ROT_FACTOR: 45 SCALE_FACTOR: 0.35 SELECT_DATA: False TEST_SET: val2017 TRAIN_SET: train2017 DATA_DIR: DEBUG: DEBUG: True SAVE_BATCH_IMAGES_GT: True SAVE_BATCH_IMAGES_PRED: True SAVE_HEATMAPS_GT: True SAVE_HEATMAPS_PRED: True GPUS: (0, 1, 2, 3) LOG_DIR: log LOSS: TOPK: 8 USE_DIFFERENT_JOINTS_WEIGHT: False USE_OHKM: False USE_TARGET_WEIGHT: True MODEL: EXTRA: FINAL_CONV_KERNEL: 1 PRETRAINED_LAYERS: ['conv1', 'bn1', 'conv2', 'bn2', 'layer1', 'transition1', 'stage2', 'transition2', 'stage3', 'transition3', 'stage4'] STAGE2: BLOCK: BASIC FUSE_METHOD: SUM NUM_BLOCKS: [4, 4] NUM_BRANCHES: 2 NUM_CHANNELS: [48, 96] NUM_MODULES: 1 STAGE3: BLOCK: BASIC FUSE_METHOD: SUM NUM_BLOCKS: [4, 4, 4] NUM_BRANCHES: 3 NUM_CHANNELS: [48, 96, 192] NUM_MODULES: 4 STAGE4: BLOCK: BASIC FUSE_METHOD: SUM NUM_BLOCKS: [4, 4, 4, 4] NUM_BRANCHES: 4 NUM_CHANNELS: [48, 96, 192, 384] NUM_MODULES: 3 HEATMAP_SIZE: [72, 96] IMAGE_SIZE: [288, 384] INIT_WEIGHTS: True NAME: pose_hrnet NUM_JOINTS: 17 PRETRAINED: models/pytorch/imagenet/hrnet_w48-8ef0771d.pth SIGMA: 3 TAG_PER_JOINT: True TARGET_TYPE: gaussian OUTPUT_DIR: output PIN_MEMORY: True PRINT_FREQ: 100 RANK: 0 TEST: BATCH_SIZE_PER_GPU: 24 BBOX_THRE: 1.0 COCO_BBOX_FILE: data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json FLIP_TEST: True IMAGE_THRE: 0.0 IN_VIS_THRE: 0.2 MODEL_FILE: models/pytorch/pose_hrnet_w48_384x288.pth NMS_THRE: 1.0 OKS_THRE: 0.9 POST_PROCESS: True SHIFT_HEATMAP: True SOFT_NMS: False USE_GT_BBOX: False TRAIN: BATCH_SIZE_PER_GPU: 24 BEGIN_EPOCH: 0 CHECKPOINT: END_EPOCH: 210 GAMMA1: 0.99 GAMMA2: 0.0 LR: 0.001 LR_FACTOR: 0.1 LR_STEP: [170, 200] MOMENTUM: 0.9 NESTEROV: False OPTIMIZER: adam RESUME: False SHUFFLE: True WD: 0.0001 WORKERS: 24 => loading model from models/pytorch/pose_hrnet_w48_384x288.pth loading annotations into memory... Done (t=0.12s) creating index... index created! => classes: ['__background__', 'person'] => num_images: 5000 => Total boxes: 104125 => Total boxes after fliter low [email protected]: 104125 => load 104125 samples Traceback (most recent call last): File "/mnt/e/hi_5/deep-high-resolution-net.pytorch/tools/test.py", line 130, in <module> main() File "/mnt/e/hi_5/deep-high-resolution-net.pytorch/tools/test.py", line 125, in main validate(cfg, valid_loader, valid_dataset, model, criterion, File "/mnt/e/hi_5/deep-high-resolution-net.pytorch/tools/../lib/core/function.py", line 118, in validate for i, (input, target, target_weight, meta) in enumerate(val_loader): File "/home/roc-hci/anaconda3/envs/hi5/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 652, in __next__ data = self._next_data() File "/home/roc-hci/anaconda3/envs/hi5/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1347, in _next_data return self._process_data(data) File "/home/roc-hci/anaconda3/envs/hi5/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1373, in _process_data data.reraise() File "/home/roc-hci/anaconda3/envs/hi5/lib/python3.10/site-packages/torch/_utils.py", line 461, in reraise raise exception RuntimeError: Caught RuntimeError in pin memory thread for device 0. Original Traceback (most recent call last): File "/home/roc-hci/anaconda3/envs/hi5/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 34, in _pin_memory_loop data = pin_memory(data, device) File "/home/roc-hci/anaconda3/envs/hi5/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 65, in pin_memory return type(data)([pin_memory(sample, device) for sample in data]) # type: ignore[call-arg] File "/home/roc-hci/anaconda3/envs/hi5/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 65, in <listcomp> return type(data)([pin_memory(sample, device) for sample in data]) # type: ignore[call-arg] File "/home/roc-hci/anaconda3/envs/hi5/lib/python3.10/site-packages/torch/utils/data/_utils/pin_memory.py", line 50, in pin_memory return data.pin_memory(device) RuntimeError: CUDA error: out of memory CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. terminate called without an active exception``` ### -------------------------------- > nvidia-smi ```Tue Jul 19 07:54:49 2022 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 515.57 Driver Version: 516.59 CUDA Version: 11.7 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... On | 00000000:0A:00.0 On | N/A | | 0% 49C P8 24W / 370W | 683MiB / 24576MiB | 2% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 1 NVIDIA GeForce ... On | 00000000:0B:00.0 Off | N/A | | 0% 39C P8 14W / 370W | 0MiB / 24576MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+```
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Only reason I can think of is my cuda version is 11.7, but the latest version of PyTorch available is for cuda 11.6. Could that be the issue?
Log:
The text was updated successfully, but these errors were encountered: