-
Notifications
You must be signed in to change notification settings - Fork 7
/
book_play.py
executable file
·194 lines (150 loc) · 4.42 KB
/
book_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python
import pickle
import math
import chess, chess.pgn
import heapq
import time
import re
import string
import numpy
import sunfish
import pickle
import random
import traceback
from book_train import make_model
from book_parser import bb2array, attacks, numeric_notation
def create_move(board, crdn):
# workaround for pawn promotions
move = chess.Move.from_uci(crdn)
if board.piece_at(move.from_square).piece_type == chess.PAWN:
if int(move.to_square/8) in [0, 7]:
move.promotion = chess.QUEEN # always promote to queen
return move
class Player(object):
def move(self, gn_current):
raise NotImplementedError()
MODEL_DATA = 'conv3x64_4096_2048_1024_2017-07-26_195636.model'
class Murasaki(Player):
def __init__(self):
self._model, _ = make_model()
self._model.compile(loss='mean_squared_error', optimizer='adadelta')
self._model.load_weights( MODEL_DATA )
def move(self, gn_current):
assert(gn_current.board().turn == True)
color = 0
## X = numpy.array([sf2array(self._pos, flip=(color==1)),])
# X = numpy.array([bb2array( gn_current.board(), flip=(color==1) )])
#print X
board = gn_current.board()
moves = board.legal_moves
X = []
for m in moves :
board.push( m )
X.append( numpy.array( [bb2array(board), attacks( board, chess.WHITE), -attacks( board, chess.BLACK)]) )
board.pop()
predicted = sorted( zip( [i[0] for i in self._model.predict( numpy.array(X))], moves ), reverse=True)
print predicted
best_value, best_move = predicted[0]
'''
best_move = ""
best_value = 1e6
for move in gn_current.board().generate_legal_moves() :
notation = numeric_notation(str(move))
value = sum([(i-j)*(i-j) for i,j in zip(predicted[0],notation)])
#print value, best_value
if best_value > value :
best_value = value
best_move = move
#print
'''
print 'best:', best_value, str(best_move)
move = create_move(gn_current.board(), str(best_move)) # consider promotions
gn_new = chess.pgn.GameNode()
gn_new.parent = gn_current
gn_new.move = move
return gn_new
class Human(Player):
def move(self, gn_current):
bb = gn_current.board()
print bb
def get_move(move_str):
try:
move = chess.Move.from_uci(move_str)
except:
print 'cant parse'
return False
if move not in bb.legal_moves:
print 'not a legal move'
return False
else:
return move
while True:
print 'your turn:'
move = get_move(raw_input())
if move:
break
gn_new = chess.pgn.GameNode()
gn_new.parent = gn_current
gn_new.move = move
return gn_new
class Sunfish(Player):
def __init__(self, maxn=1e4):
self._pos = sunfish.Position(sunfish.initial, 0, (True,True), (True,True), 0, 0)
self._maxn = maxn
def move(self, gn_current):
import sunfish
assert(gn_current.board().turn == False)
# Apply last_move
crdn = str(gn_current.move)
move = (sunfish.parse(crdn[0:2]), sunfish.parse(crdn[2:4]))
self._pos = self._pos.move(move)
t0 = time.time()
move, score = sunfish.search(self._pos, maxn=self._maxn)
print time.time() - t0, move, score
self._pos = self._pos.move(move)
crdn = sunfish.render(119-move[0]) + sunfish.render(119 - move[1])
move = create_move(gn_current.board(), crdn)
gn_new = chess.pgn.GameNode()
gn_new.parent = gn_current
gn_new.move = move
return gn_new
def game():
gn_current = chess.pgn.Game()
maxn = 10 ** (2.0 + random.random() * 1.0) # max nodes for sunfish
print 'maxn %f' % maxn
player_a = Murasaki()
player_b = Human()
# player_b = Sunfish(maxn=maxn)
times = {'A': 0.0, 'B': 0.0}
while True:
for side, player in [('A', player_a), ('B', player_b)]:
t0 = time.time()
try:
gn_current = player.move(gn_current)
except KeyboardInterrupt:
return
except:
traceback.print_exc()
return side + '-exception', times
times[side] += time.time() - t0
print '=========== Player %s: %s' % (side, gn_current.move)
s = str(gn_current.board())
print s
if gn_current.board().is_checkmate():
return side, times
elif gn_current.board().is_stalemate():
return '-', times
elif gn_current.board().can_claim_fifty_moves():
return '-', times
elif s.find('K') == -1 or s.find('k') == -1:
# Both AI's suck at checkmating, so also detect capturing the king
return side, times
def play():
while True:
side, times = game()
f = open('stats.txt', 'a')
f.write('%s %f %f\n' % (side, times['A'], times['B']))
f.close()
if __name__ == '__main__':
# play()
game()