-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
511 lines (456 loc) · 21.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import os
import pathlib
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple
import numpy as np
import wandb
import torch
import torch.nn as nn
import torch.utils.tensorboard
import torch_geometric.data as gd
from omegaconf import OmegaConf
from rdkit import RDLogger
from rdkit.Chem.rdchem import Mol as RDMol
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
from gflownet.data.replay_buffer import ReplayBuffer
from gflownet.data.sampling_iterator import SamplingIterator
from gflownet.envs.graph_building_env import GraphActionCategorical, GraphBuildingEnv, GraphBuildingEnvContext
from gflownet.envs.seq_building_env import SeqBatch
from gflownet.utils.misc import create_logger
from gflownet.utils.multiprocessing_proxy import mp_object_wrapper
from .config import Config
# This type represents an unprocessed list of reward signals/conditioning information
FlatRewards = NewType("FlatRewards", Tensor) # type: ignore
# This type represents the outcome for a multi-objective task of
# converting FlatRewards to a scalar, e.g. (sum R_i omega_i) ** beta
RewardScalar = NewType("RewardScalar", Tensor) # type: ignore
class GFNAlgorithm:
def compute_batch_losses(
self, model: nn.Module, batch: gd.Batch, num_bootstrap: Optional[int] = 0
) -> Tuple[Tensor, Dict[str, Tensor]]:
"""Computes the loss for a batch of data, and proves logging informations
Parameters
----------
model: nn.Module
The model being trained or evaluated
batch: gd.Batch
A batch of graphs
num_bootstrap: Optional[int]
The number of trajectories with reward targets in the batch (if applicable).
Returns
-------
loss: Tensor
The loss for that batch
info: Dict[str, Tensor]
Logged information about model predictions.
"""
raise NotImplementedError()
class GFNTask:
def cond_info_to_logreward(self, cond_info: Dict[str, Tensor], flat_reward: FlatRewards) -> RewardScalar:
"""Combines a minibatch of reward signal vectors and conditional information into a scalar reward.
Parameters
----------
cond_info: Dict[str, Tensor]
A dictionary with various conditional informations (e.g. temperature)
flat_reward: FlatRewards
A 2d tensor where each row represents a series of flat rewards.
Returns
-------
reward: RewardScalar
A 1d tensor, a scalar log-reward for each minibatch entry.
"""
raise NotImplementedError()
def compute_flat_rewards(self, mols: List[RDMol]) -> Tuple[FlatRewards, Tensor]:
"""Compute the flat rewards of mols according the the tasks' proxies
Parameters
----------
mols: List[RDMol]
A list of RDKit molecules.
Returns
-------
reward: FlatRewards
A 2d tensor, a vector of scalar reward for valid each molecule.
is_valid: Tensor
A 1d tensor, a boolean indicating whether the molecule is valid.
"""
raise NotImplementedError()
class GFNTrainer:
def __init__(self, hps: Dict[str, Any]):
"""A GFlowNet trainer. Contains the main training loop in `run` and should be subclassed.
Parameters
----------
hps: Dict[str, Any]
A dictionary of hyperparameters. These override default values obtained by the `set_default_hps` method.
device: torch.device
The torch device of the main worker.
"""
# self.setup should at least set these up:
self.training_data: Dataset
self.test_data: Dataset
self.full_data: Dataset # used for select task(s)
self.model: nn.Module
# `sampling_model` is used by the data workers to sample new objects from the model. Can be
# the same as `model`.
self.sampling_model: nn.Module
self.replay_buffer: Optional[ReplayBuffer] = None
self.mb_size: int
self.env: GraphBuildingEnv
self.ctx: GraphBuildingEnvContext
self.task: GFNTask
self.algo: GFNAlgorithm
self.model_pretrain_for_sampling: nn.Module = None
# There are three sources of config values
# - The default values specified in individual config classes
# - The default values specified in the `default_hps` method, typically what is defined by a task
# - The values passed in the constructor, typically what is called by the user
# The final config is obtained by merging the three sources
self.cfg: Config = OmegaConf.structured(Config())
self.set_default_hps(self.cfg)
# OmegaConf returns a fancy object but we can still pretend it's a Config instance
self.cfg = OmegaConf.merge(self.cfg, hps) # type: ignore
self.device = torch.device(self.cfg.device)
# set seed
torch.manual_seed(self.cfg.seed)
# Print the loss every `self.print_every` iterations
self.print_every = self.cfg.print_every
# These hooks allow us to compute extra quantities when sampling data
self.sampling_hooks: List[Callable] = []
self.valid_sampling_hooks: List[Callable] = []
# Will check if parameters are finite at every iteration (can be costly)
self._validate_parameters = False
# make dir if doesn't exit
os.makedirs(self.cfg.log_dir, exist_ok=True)
# init wandb logger
wandb.init(
entity="lazaratan", # Set the project where this run will be logged
project="gflownet-gen",
config=hps, # Track hyperparameters and run metadata
dir=hps['log_dir'],
tags=hps['log_tags'],
mode='disabled' if 'DISABLE_WANDB' in os.environ else None,
)
self.setup()
def set_default_hps(self, base: Config):
raise NotImplementedError()
def setup_env_context(self):
raise NotImplementedError()
def setup_task(self):
raise NotImplementedError()
def setup_model(self):
raise NotImplementedError()
def setup_algo(self):
raise NotImplementedError()
def setup_data(self):
pass
def step(self, loss: Tensor):
raise NotImplementedError()
def setup(self):
RDLogger.DisableLog("rdApp.*")
self.rng = np.random.default_rng(142857)
self.env = GraphBuildingEnv()
self.setup_data()
self.setup_task()
self.setup_env_context()
self.setup_algo()
self.setup_model()
def _wrap_for_mp(self, obj, send_to_device=False):
"""Wraps an object in a placeholder whose reference can be sent to a
data worker process (only if the number of workers is non-zero)."""
if send_to_device:
obj.to(self.device)
if self.cfg.num_workers > 0 and obj is not None:
placeholder = mp_object_wrapper(
obj,
self.cfg.num_workers,
cast_types=(gd.Batch, GraphActionCategorical, SeqBatch),
pickle_messages=self.cfg.pickle_mp_messages,
)
return placeholder, torch.device("cpu")
else:
return obj, self.device
def build_callbacks(self):
return {}
def build_training_data_loader(self) -> DataLoader:
model, dev = self._wrap_for_mp(self.sampling_model, send_to_device=True)
if self.model_pretrain_for_sampling is not None:
model_pretrain_for_sampling, _ = self._wrap_for_mp(self.model_pretrain_for_sampling, send_to_device=True)
replay_buffer, _ = (
self._wrap_for_mp(self.replay_buffer, send_to_device=False)
if self.replay_buffer is not None
else (None, None)
)
iterator = SamplingIterator(
self.training_data,
model,
self.ctx,
self.algo,
self.task,
dev,
batch_size=self.cfg.algo.global_batch_size,
illegal_action_logreward=self.cfg.algo.illegal_action_logreward,
replay_buffer=replay_buffer,
ratio=self.cfg.algo.offline_ratio,
log_dir=str(pathlib.Path(self.cfg.log_dir) / "train"),
random_action_prob=self.cfg.algo.train_random_action_prob,
hindsight_ratio=self.cfg.replay.hindsight_ratio,
model_pretrain_for_sampling=model_pretrain_for_sampling if self.model_pretrain_for_sampling is not None else None,
alpha=self.cfg.algo.alpha,
)
for hook in self.sampling_hooks:
iterator.add_log_hook(hook)
return torch.utils.data.DataLoader(
iterator,
batch_size=None,
num_workers=self.cfg.num_workers,
persistent_workers=self.cfg.num_workers > 0,
# The 2 here is an odd quirk of torch 1.10, it is fixed and
# replaced by None in torch 2.
prefetch_factor=1 if self.cfg.num_workers else 2,
)
def build_validation_data_loader(self) -> DataLoader:
model, dev = self._wrap_for_mp(self.model, send_to_device=True)
iterator = SamplingIterator(
self.test_data,
model,
self.ctx,
self.algo,
self.task,
dev,
batch_size=self.cfg.algo.global_batch_size,
illegal_action_logreward=self.cfg.algo.illegal_action_logreward,
ratio=self.cfg.algo.valid_offline_ratio,
log_dir=str(pathlib.Path(self.cfg.log_dir) / "valid"),
sample_cond_info=self.cfg.algo.valid_sample_cond_info,
stream=False,
random_action_prob=self.cfg.algo.valid_random_action_prob,
)
for hook in self.valid_sampling_hooks:
iterator.add_log_hook(hook)
return torch.utils.data.DataLoader(
iterator,
batch_size=None,
num_workers=self.cfg.num_workers,
persistent_workers=self.cfg.num_workers > 0,
prefetch_factor=1 if self.cfg.num_workers else 2,
)
def build_bgfn_validation_data_loader(self) -> DataLoader:
model, dev = self._wrap_for_mp(self.model, send_to_device=True)
iterator = SamplingIterator(
self.test_cond_logZs_data,
model,
self.ctx,
self.algo,
self.task,
dev,
batch_size=self.cfg.algo.global_batch_size,
illegal_action_logreward=self.cfg.algo.illegal_action_logreward,
ratio=self.cfg.algo.valid_offline_ratio,
log_dir=str(pathlib.Path(self.cfg.log_dir) / "valid"),
sample_cond_info=self.cfg.algo.valid_sample_cond_info,
stream=False,
random_action_prob=self.cfg.algo.valid_random_action_prob,
)
for hook in self.valid_sampling_hooks:
iterator.add_log_hook(hook)
return torch.utils.data.DataLoader(
iterator,
batch_size=None,
num_workers=self.cfg.num_workers,
persistent_workers=self.cfg.num_workers > 0,
prefetch_factor=1 if self.cfg.num_workers else 2,
)
def build_final_data_loader(self) -> DataLoader:
model, dev = self._wrap_for_mp(self.sampling_model, send_to_device=True)
iterator = SamplingIterator(
self.training_data,
model,
self.ctx,
self.algo,
self.task,
dev,
batch_size=self.cfg.algo.global_batch_size,
illegal_action_logreward=self.cfg.algo.illegal_action_logreward,
replay_buffer=None,
ratio=0.0,
log_dir=os.path.join(self.cfg.log_dir, "final"),
random_action_prob=0.0,
hindsight_ratio=0.0,
init_train_iter=self.cfg.num_training_steps,
)
for hook in self.sampling_hooks:
iterator.add_log_hook(hook)
return torch.utils.data.DataLoader(
iterator,
batch_size=None,
num_workers=self.cfg.num_workers,
persistent_workers=self.cfg.num_workers > 0,
prefetch_factor=1 if self.cfg.num_workers else 2,
)
def train_batch(self, batch: gd.Batch, epoch_idx: int, batch_idx: int, train_it: int) -> Dict[str, Any]:
try:
loss, info = self.algo.compute_batch_losses(self.model, batch)
if not torch.isfinite(loss):
raise ValueError("loss is not finite")
step_info = self.step(loss)
if self._validate_parameters and not all([torch.isfinite(i).all() for i in self.model.parameters()]):
raise ValueError("parameters are not finite")
except ValueError as e:
os.makedirs(self.cfg.log_dir, exist_ok=True)
torch.save([self.model.state_dict(), batch, loss, info], open(self.cfg.log_dir + "/dump.pkl", "wb"))
raise e
if step_info is not None:
info.update(step_info)
if hasattr(batch, "extra_info"):
info.update(batch.extra_info)
return {k: v.item() if hasattr(v, "item") else v for k, v in info.items()}
def evaluate_batch(self, batch: gd.Batch, epoch_idx: int = 0, batch_idx: int = 0) -> Dict[str, Any]:
loss, info = self.algo.compute_batch_losses(self.model, batch)
if hasattr(batch, "extra_info"):
info.update(batch.extra_info)
return {k: v.item() if hasattr(v, "item") else v for k, v in info.items()}
def run(self, logger=None):
"""Trains the GFN for `num_training_steps` minibatches, performing
validation every `validate_every` minibatches.
"""
if logger is None:
logger = create_logger(logfile=self.cfg.log_dir + "/train.log")
self.model.to(self.device)
self.sampling_model.to(self.device)
epoch_length = max(len(self.training_data), 1)
valid_freq = self.cfg.validate_every
# If checkpoint_every is not specified, checkpoint at every validation epoch
ckpt_freq = self.cfg.checkpoint_every if self.cfg.checkpoint_every is not None else valid_freq
train_dl = self.build_training_data_loader()
if self.cfg.algo.flow_reg and self.cfg.cond.logZ.sample_dist is not None:
valid_dl = self.build_bgfn_validation_data_loader()
else:
valid_dl = self.build_validation_data_loader()
if self.cfg.num_final_gen_steps:
final_dl = self.build_final_data_loader()
callbacks = self.build_callbacks()
start = self.cfg.start_at_step + 1
num_training_steps = self.cfg.num_training_steps
logger.info("Starting training")
# Compute p(x) for sampling x ~ p(x). Default is x ~ uniform.
if self.log_sampling_g_distribution is not None:
train_dl.dataset.compute_graph_sampling_prob(self.log_sampling_g_distribution)
valid_dl.dataset.compute_graph_sampling_prob(self.log_sampling_g_distribution)
for it, batch in zip(range(start, 1 + num_training_steps), cycle(train_dl)):
epoch_idx = it // epoch_length
batch_idx = it % epoch_length
if self.replay_buffer is not None and len(self.replay_buffer) < self.replay_buffer.warmup:
logger.info(
f"iteration {it} : warming up replay buffer {len(self.replay_buffer)}/{self.replay_buffer.warmup}"
)
continue
info = self.train_batch(batch.to(self.device), epoch_idx, batch_idx, it)
self.log(info, it, "train")
if it % self.print_every == 0:
logger.info(f"iteration {it} : " + " ".join(f"{k}:{v:.2f}" for k, v in info.items()))
# log train-wandb
info['num_examples_seen'] = it*self.cfg.algo.global_batch_size
wandb.log({"train": info}, step=it)
if valid_freq > 0 and it % valid_freq == 0:
if self.cfg.run_valid_dl:
for batch in valid_dl:
info = self.evaluate_batch(batch.to(self.device), epoch_idx, batch_idx)
if self.cfg.algo.flow_reg and self.cfg.cond.logZ.sample_dist is not None:
self.log(info, it, f"valid-cond-logZ_{str(batch.cond_info.cpu().numpy()[0, 0])}")
else:
self.log(info, it, "valid")
logger.info(f"validation - iteration {it} : " + " ".join(f"{k}:{v:.2f}" for k, v in info.items()))
if self.algo.model_is_autoregressive: # True for sequence task
#print("\n CHECK \n")
#print(self.cfg.algo.valid_offline_ratio)
#print(self.ctx)
end_metrics = {}
for c in callbacks.values():
if hasattr(c, "on_validation_end"):
if self.cfg.task.basic_graph.train_ratio == 1.0: # this only works for basic_graph task ... change to be more general
c.on_validation_end(end_metrics, valid_batch_ids=None)
else:
c.on_validation_end(end_metrics, valid_batch_ids=self.test_data.idcs)
self.log(end_metrics, it, "valid_end")
#for batch in full_dl:
#print(batch)
#print(asdasd)
#state_log_flows[bi : bi + len(bs)] = mo
#log_rewards_estimate[bi : bi + len(bs)] = mo + cat.logsoftmax()[0]
else: # for graph task
end_metrics = {}
for c in callbacks.values():
if hasattr(c, "on_validation_end"):
#c.on_validation_end(end_metrics)
if self.cfg.task.basic_graph.train_ratio == 1.0: # this only works for basic_graph task ... change to be more general
c.on_validation_end(end_metrics, valid_batch_ids=None)
else:
c.on_validation_end(end_metrics, valid_batch_ids=self.test_data.idcs)
self.log(end_metrics, it, "valid_end")
# log valid-wandb
info['num_examples_seen'] = it*self.cfg.algo.global_batch_size
wandb.log({"valid-info": info, "valid-end-metrics": end_metrics}, step=it)
# update p(x) for sampling x ~ p(x), if using paramaterized p(x; \theta) for sampling
if self.log_sampling_g_distribution is not None:
if self.cfg.algo.offline_sampling_g_distribution == "log_p": # x ~ p(x; \theta)
self.log_sampling_g_distribution = self.model_log_probs
train_dl.dataset.compute_graph_sampling_prob(self.log_sampling_g_distribution)
valid_dl.dataset.compute_graph_sampling_prob(self.log_sampling_g_distribution)
elif self.cfg.algo.offline_sampling_g_distribution == "l2_log_error_gfn" or self.cfg.algo.offline_sampling_g_distribution == "l1_error_gfn": # x ~ ||p(x; \theta) - p(x)||
err = []
for lq, lp in zip(self.model_log_probs, self.true_log_probs):
if self.cfg.algo.offline_sampling_g_distribution == "l2_log_error_gfn":
err.append((lq - lp)**2)
else:
err.append(np.abs(np.exp(lq) - np.exp(lp)))
err = np.array(err)
err = err / np.sum(err)
self.log_sampling_g_distribution = np.log(err)
train_dl.dataset.compute_graph_sampling_prob(self.log_sampling_g_distribution)
valid_dl.dataset.compute_graph_sampling_prob(self.log_sampling_g_distribution)
if ckpt_freq > 0 and it % ckpt_freq == 0:
self._save_state(it)
self._save_state(num_training_steps)
num_final_gen_steps = self.cfg.num_final_gen_steps
if num_final_gen_steps:
logger.info(f"Generating final {num_final_gen_steps} batches ...")
for it, batch in zip(
range(num_training_steps, num_training_steps + num_final_gen_steps + 1),
cycle(final_dl),
):
pass
logger.info("Final generation steps completed.")
def _save_state(self, it):
torch.save(
{
"models_state_dict": [self.model.state_dict()],
"cfg": self.cfg,
"step": it,
},
open(pathlib.Path(self.cfg.log_dir) / "model_state.pt", "wb"),
)
def log(self, info, index, key):
if not hasattr(self, "_summary_writer"):
self._summary_writer = torch.utils.tensorboard.SummaryWriter(self.cfg.log_dir)
if self.cfg.cond.logZ.sample_dist is not None:
for k, v in info.items():
if len(np.array(v).shape) > 0:
dist_params = self.cfg.cond.logZ.dist_params
num_logZ = self.cfg.cond.logZ.num_valid_logZ_samples
logZ_true = [self.exact_prob_cb.logZ]
logZ_range = np.linspace(dist_params[0], dist_params[1], num_logZ).tolist()
logZs = logZ_true + logZ_range
scalars_dict = {str(logz): val for logz, val in zip(logZs, v)}
i = 0
for logz, val in scalars_dict.items():
self._summary_writer.add_scalar(f"{key}_{k}_{i}", val, index)
i += 1
#self._summary_writer.add_histogram(f"{key}_{k}", v, index, ins="auto")
else:
self._summary_writer.add_scalar(f"{key}_{k}", v, index)
else:
for k, v in info.items():
self._summary_writer.add_scalar(f"{key}_{k}", v, index)
def cycle(it):
while True:
for i in it:
yield i