-
Notifications
You must be signed in to change notification settings - Fork 27
/
metrics.py
42 lines (34 loc) · 1.38 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# ---------------------------------------------------------------
# CleanNet implementation based on https://arxiv.org/abs/1711.07131.
# "CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise"
# Kuang-Huei Lee, Xiaodong He, Lei Zhang, Linjun Yang
#
# Writen by Kuang-Huei Lee, 2018
# Licensed under the MSR-LA Full Rights License [see license.txt]
# ---------------------------------------------------------------
"""Define distance measurement and accuracy"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def similarity(x1, x2):
"""Cosine similarity
Args:
x1: a feature vector
x2: a feature vector
Returns:
cosine similarity between x1 and x2
"""
with tf.variable_scope("similarity"):
return tf.reduce_sum(tf.multiply(tf.nn.l2_normalize(x1,1),tf.nn.l2_normalize(x2,1)), axis=1)
def accuracy(vlabel, cos_sim, threshold=0.1, scope="accuracy"):
"""Average accuracy
Args:
vlabel: verification labels
cos_sim: predicted cosine similarity
threshold: threshold on cosine similarity
Returns:
accuracy
"""
with tf.variable_scope(scope):
return tf.reduce_mean(tf.cast(tf.equal(vlabel, tf.cast(tf.greater_equal(cos_sim, tf.constant(threshold)), tf.float32)), tf.float32))