forked from fabbrimatteo/JTA-Dataset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize.py
105 lines (78 loc) · 3.37 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: utf-8 -*-
# ---------------------
import json
import sys
from typing import *
import click
import imageio
import matplotlib.pyplot as plt
import numpy as np
from path import Path
from joint import Joint
from pose import Pose
imageio.plugins.ffmpeg.download()
MAX_COLORS = 42
# check python version
assert sys.version_info >= (3, 6), '[!] This script requires Python >= 3.6'
def get_colors(number_of_colors, cmap_name='rainbow'):
# type: (int, str) -> List[List[int]]
"""
:param number_of_colors: number of colors you want to get
:param cmap_name: name of the colormap you want to use
:return: list of 'number_of_colors' colors based on the required color map ('cmap_name')
"""
colors = plt.get_cmap(cmap_name)(np.linspace(0, 1, number_of_colors))[:, :-1]*255
return colors.astype(int).tolist()
def get_pose(frame_data, person_id):
# type: (np.ndarray, int) -> Pose
"""
:param frame_data: data of the current frame
:param person_id: person identifier
:return: list of joints in the current frame with the required person ID
"""
pose = [Joint(j) for j in frame_data[frame_data[:, 1] == person_id]]
pose.sort(key=(lambda j: j.type))
return Pose(pose)
H1 = 'path of the video you want to visualize annotations'
H2 = 'path of JSON containing the annotations you want to visualize'
H3 = 'path of the output video with the annotations'
H4 = 'if `hide` the annotations of people completely occluded by objects will not be displayed in the output video'
@click.command()
@click.option('--in_mp4_file_path', type=click.Path(exists=True), prompt='Enter \'in_mp4_file_path\'', help=H1)
@click.option('--json_file_path', type=click.Path(exists=True), prompt='Enter \'json_file_path\'', help=H2)
@click.option('--out_mp4_file_path', type=click.Path(), prompt='Enter \'out_mp4_file_path\'', help=H3)
@click.option('--hide/--no-hide', default=True, help=H4)
def main(in_mp4_file_path, json_file_path, out_mp4_file_path, hide):
# type: (str, str, str, bool) -> None
"""
Script that provides a visual representation of the annotations
"""
out_mp4_file_path = Path(out_mp4_file_path)
if not out_mp4_file_path.parent.exists() and out_mp4_file_path.parent != Path(''):
out_mp4_file_path.parent.makedirs()
reader = imageio.get_reader(in_mp4_file_path)
writer = imageio.get_writer(out_mp4_file_path, fps=30)
with open(json_file_path, 'r') as json_file:
data = json.load(json_file)
data = np.array(data)
colors = get_colors(number_of_colors=MAX_COLORS, cmap_name='jet')
print(f'▸ visualizing annotations of \'{Path(in_mp4_file_path).abspath()}\'')
for frame_number, image in enumerate(reader):
# NOTE: frame #0 does NOT exists: first frame is #1
frame_data = data[data[:, 0] == frame_number + 1] # type: np.ndarray
for p_id in set(frame_data[:, 1]):
pose = get_pose(frame_data=frame_data, person_id=p_id)
# if the "hide" flag is set, ignore the "invisible" poses
# (invisible pose = pose of which I do not see any joint)
if hide and pose.invisible:
continue
# select pose color base on its unique identifier
color = colors[int(p_id)%len(colors)]
# draw pose on image
image = pose.draw(image=image, color=color)
writer.append_data(np.vstack([image, image[-8:, :]]))
print(f'\r▸ progress: {100*(frame_number/899):6.2f}%', end='')
writer.close()
print(f'\n▸ video with annotations: \'{out_mp4_file_path.abspath()}\'\n')
if __name__ == '__main__':
main()