-
Notifications
You must be signed in to change notification settings - Fork 4
/
helpers.py
123 lines (100 loc) · 3.57 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
##==================================================================
# Physics.activity
# Helper classes and functions
# By Alex Levenson
#==================================================================
import math
# distance calculator, pt1 and pt2 are ordred pairs
def distance(pt1, pt2):
return math.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] -pt2[1]) ** 2)
# returns the angle between the line segment from pt1 --> pt2 and the x axis, from -pi to pi
def getAngle(pt1,pt2):
xcomp = pt2[0] - pt1[0]
ycomp = pt1[1] - pt2[1]
return math.atan2(ycomp,xcomp)
# returns a list of ordered pairs that describe an equilteral triangle around the segment from pt1 --> pt2
def constructTriangleFromLine(p1,p2):
halfHeightVector = (0.57735*(p2[1] - p1[1]), 0.57735*(p2[0] - p1[0]))
p3 = (p1[0] + halfHeightVector[0], p1[1] - halfHeightVector[1])
p4 = (p1[0] - halfHeightVector[0], p1[1] + halfHeightVector[1])
return [p2,p3,p4]
# returns the area of a polygon
def polyArea(vertices):
n = len(vertices)
A = 0
p=n-1
q=0
while q<n:
A+=vertices[p][0]*vertices[q][1] - vertices[q][0]*vertices[p][1]
p=q
q += 1
return A/2.0
#Some polygon magic, thanks to John W. Ratcliff on www.flipcode.com
# returns true if pt is in triangle
def insideTriangle(pt,triangle):
ax = triangle[2][0] - triangle[1][0]
ay = triangle[2][1] - triangle[1][1]
bx = triangle[0][0] - triangle[2][0]
by = triangle[0][1] - triangle[2][1]
cx = triangle[1][0] - triangle[0][0]
cy = triangle[1][1] - triangle[0][1]
apx= pt[0] - triangle[0][0]
apy= pt[1] - triangle[0][1]
bpx= pt[0] - triangle[1][0]
bpy= pt[1] - triangle[1][1]
cpx= pt[0] - triangle[2][0]
cpy= pt[1] - triangle[2][1]
aCROSSbp = ax*bpy - ay*bpx
cCROSSap = cx*apy - cy*apx
bCROSScp = bx*cpy - by*cpx
return aCROSSbp >= 0.0 and bCROSScp >= 0.0 and cCROSSap >= 0.0
def polySnip(vertices,u,v,w,n):
EPSILON = 0.0000000001
Ax = vertices[u][0]
Ay = vertices[u][1]
Bx = vertices[v][0]
By = vertices[v][1]
Cx = vertices[w][0]
Cy = vertices[w][1]
if EPSILON > (((Bx-Ax)*(Cy-Ay)) - ((By-Ay)*(Cx-Ax))): return False
for p in range(0,n):
if p == u or p == v or p == w: continue
Px = vertices[p][0];
Py = vertices[p][1];
if insideTriangle((Px,Py),((Ax,Ay),(Bx,By),(Cx,Cy))): return False;
return True;
# decomposes a polygon into its triangles
def decomposePoly(vertices):
vertices = list(vertices)
n = len(vertices)
result = []
if(n < 3): return [] # not a poly!
# force a counter-clockwise polygon
if 0 >= polyArea(vertices):
vertices.reverse()
# remove nv-2 vertices, creating 1 triangle every time
nv = n
count = 2*nv # error detection
m=0
v=nv-1
while nv>2:
count -= 1
if 0>= count:
return [] # Error -- probably bad polygon
# three consecutive vertices
u = v
if nv<=u: u = 0 # previous
v = u+1
if nv<=v: v = 0 # new v
w = v+1
if nv<=w: w = 0 # next
if(polySnip(vertices,u,v,w,nv)):
# record this triangle
result.append((vertices[u],vertices[v],vertices[w]))
m+=1
# remove v from remaining polygon
vertices.pop(v)
nv -= 1
# reset error detection
count = 2*nv
return result