-
Notifications
You must be signed in to change notification settings - Fork 0
/
noisenet_struc.txt
90 lines (88 loc) · 2.73 KB
/
noisenet_struc.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
Net(
(G1): GLU(
(cnn_lin): Conv2d(1, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(mp): MaxPool2d(kernel_size=(2, 4), stride=(2, 4), padding=0, dilation=1, ceil_mode=False)
)
(G2): GLU(
(cnn_lin): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(mp): MaxPool2d(kernel_size=(2, 4), stride=(2, 4), padding=0, dilation=1, ceil_mode=False)
)
(G3): GLU(
(cnn_lin): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(mp): MaxPool2d(kernel_size=(1, 1), stride=(1, 1), padding=0, dilation=1, ceil_mode=False)
)
(pred): DNN(
(dnn1): Linear(in_features=768, out_features=256, bias=True)
(bn1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pred): Linear(in_features=256, out_features=2, bias=True)
(dp): Dropout(p=0.5)
)
)
Model:noisecnn #params:1380226
None
Load Pre_trained Model : ./model/epoch_56
module.G1.cnn_lin.weight
module.G1.cnn_prd.weight
module.G1.cnn_rec.weight
module.G1.bn.weight
module.G1.bn.bias
module.G1.bn.running_mean
module.G1.bn.running_var
module.G1.bn.num_batches_tracked
module.G2.cnn_lin.weight
module.G2.cnn_prd.weight
module.G2.cnn_rec.weight
module.G2.bn.weight
module.G2.bn.bias
module.G2.bn.running_mean
module.G2.bn.running_var
module.G2.bn.num_batches_tracked
module.G3.cnn_lin.weight
module.G3.cnn_prd.weight
module.G3.cnn_rec.weight
module.G3.bn.weight
module.G3.bn.bias
module.G3.bn.running_mean
module.G3.bn.running_var
module.G3.bn.num_batches_tracked
module.D1.cnn_lin.weight
module.D1.cnn_1.weight
module.D1.bn1.weight
module.D1.bn1.bias
module.D1.bn1.running_mean
module.D1.bn1.running_var
module.D1.bn1.num_batches_tracked
module.D1.cnn_prd.weight
module.D1.cnn_rec.weight
module.D1.bn.weight
module.D1.bn.bias
module.D1.bn.running_mean
module.D1.bn.running_var
module.D1.bn.num_batches_tracked
module.D2.cnn_lin.weight
module.D2.cnn_1.weight
module.D2.bn1.weight
module.D2.bn1.bias
module.D2.bn1.running_mean
module.D2.bn1.running_var
module.D2.bn1.num_batches_tracked
module.D2.cnn_prd.weight
module.D2.cnn_rec.weight
module.D2.bn.weight
module.D2.bn.bias
module.D2.bn.running_mean
module.D2.bn.running_var
module.D2.bn.num_batches_tracked
module.pred.dnn1.weight
module.pred.dnn1.bias
module.pred.bn1.weight
module.pred.bn1.bias
module.pred.bn1.running_mean
module.pred.bn1.running_var
module.pred.bn1.num_batches_tracked
module.pred.pred.weight
module.pred.pred.bias
Load Pre_trained Model : ./model/epoch_56