-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
executable file
·346 lines (273 loc) · 14.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import os
import argparse
app = argparse.ArgumentParser()
app.add_argument("--freq", type=int, default=250, help='Saving frequency.')
app.add_argument("--model", type=str, default='alexnet', help='alexnet / resnet18 / resnet50 / resnet101.')
app.add_argument("--online_tracker", type=int, default=1, help='Whether or not applying wandb.')
app.add_argument("--dataset", type=str, default='aff_wild', help='aff_wild / aff_wild2 / afew_va / affectnet.')
app.add_argument("--data_path", type=str, default='/')
app.add_argument("--save_path", type=str, default='/')
args = app.parse_args()
import torch
import pandas as pd
import math
import numpy as np
import matplotlib.pyplot as plt
import time
from time import gmtime, strftime
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from PIL import Image
import torchvision.models as models
import torchvision.datasets as datasets
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torch.nn.functional as F
from fabulous.color import fg256
import cvxpy as cp
import wandb
from utils import init_weights, pair_mining, pcc_ccc_loss, vector_difference, penalty_function
from dataset_utils import FaceDataset
from models import encoder_Alex, encoder_R18, regressor_Alex, regressor_R18, regressor_R50, regressor_R101, spregressor, vregressor
from cvx_utils import OptLayer
from evaluation import interm_evaluation
def model_training(model, optimizer, scheduler, current_info, num_epochs):
if args.online_tracker:
wandb.init(project="AVCE_FER")
cnt, balance_factor, margin = 0, 0.8, 1.0
encoder = model[0]
regressor = model[1]
sp_regressor = model[2]
sp_regressor.train(True)
sp_regressor.apply(init_weights)
v_regressor = model[3]
v_regressor.train(True)
v_regressor.apply(init_weights)
ALPHA = Variable(torch.FloatTensor([0.5]).cuda(), requires_grad=True)
BETA = Variable(torch.FloatTensor([0.005]).cuda(), requires_grad=True)
GAMMA = Variable(torch.FloatTensor([0.5]).cuda(), requires_grad=True)
enc_opt = optimizer[0]
reg_opt = optimizer[1]
spreg_opt = optimizer[2]
vreg_opt = optimizer[3]
MSE = nn.MSELoss()
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
# SparseMax
z = cp.Variable(32)
x = cp.Parameter(32)
f_ = lambda z,x : cp.sum_squares(z - x) if isinstance(z, cp.Variable) else torch.sum((x-z)**2)
g_ = lambda z,x : -z
h_ = lambda z,x: cp.sum(z) - 1 if isinstance(z, cp.Variable) else z.sum() - 1
sp_layer = OptLayer([z], [x], f_, [g_], [h_])
# SoftMax
zs = cp.Variable(32)
xs = cp.Parameter(32)
fs_ = lambda zs,xs: -zs@xs - cp.sum(cp.entr(zs)) if isinstance(zs, cp.Variable) else -zs@xs + [email protected](zs)
hs_ = lambda zs,xs: cp.sum(zs) - 1 if isinstance(zs, cp.Variable) else zs.sum() - 1
sm_layer = OptLayer([zs], [xs], fs_, [], [hs_])
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
# Itr per epoch
for epoch in range(num_epochs):
print('epoch ' + str(epoch) + '/' + str(num_epochs-1))
epoch_iterator = tqdm(loaders['train'],
desc="Training (X / X Steps) (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True)
for batch_i, data_i in enumerate(epoch_iterator):
for enc_param_group in enc_opt.param_groups:
aa = enc_param_group['lr']
for reg_param_group in reg_opt.param_groups:
bb = reg_param_group['lr']
data, emotions = data_i['image'], data_i['va']
valence = np.expand_dims(np.asarray(emotions[0]), axis=1)
arousal = np.expand_dims(np.asarray(emotions[1]), axis=1)
emotions = torch.from_numpy(np.concatenate([valence, arousal], axis=1)).float()
if use_gpu:
inputs, correct_labels = Variable(data.cuda()), Variable(emotions.cuda())
else:
inputs, correct_labels = Variable(data), Variable(emotions)
# ---------------
# Train regressor
# ---------------
z = encoder(inputs)
scores, z_btl = regressor(z)
z_sp_btl = sp_layer(z_btl.cpu()).cuda()
z_sm_btl = F.softmax(z_btl)
sp_scores = sp_regressor(z_sp_btl)
sm_scores = sp_regressor(z_sm_btl)
# scores_pm, sp_scores = pair_mining(scores, sp_scores, fixed_sample=0, is_positive=1)
# scores_nm, sm_scores = pair_mining(scores, sm_scores, fixed_sample=0, is_positive=0)
sp_scores_norm = torch.norm(sp_scores, p=2, dim=1)
sm_scores_norm = torch.norm(sm_scores, p=2, dim=1)
scores_norm = torch.norm(scores, p=2, dim=1)
diff_norm_pos = balance_factor * ( 1. - torch.abs(sp_scores_norm - scores_norm) )
diff_norm_neg = balance_factor * ( 1. - torch.abs(sm_scores_norm - scores_norm) )
inner_product = (sp_scores * scores).sum(dim=1)
a_norm = sp_scores.pow(2).sum(dim=1).pow(0.5) + 1e-8
b_norm = scores.pow(2).sum(dim=1).pow(0.5) + 1e-8
cos_sp = inner_product / (2 * a_norm * b_norm)
_angle_sp = torch.acos(cos_sp)
angle_sp = torch.clamp(1. - 0.25 * _angle_sp/math.pi, min=1e-6, max=1.)
with torch.no_grad():
cos_sp_mean = _angle_sp.mean()
angle_sp_mean = angle_sp.mean()
inner_product = (sm_scores * scores).sum(dim=1)
a_norm = sm_scores.pow(2).sum(dim=1).pow(0.5) + 1e-8
b_norm = scores.pow(2).sum(dim=1).pow(0.5) + 1e-8
cos_sm = inner_product / (2 * a_norm * b_norm)
_angle_sm = torch.acos(cos_sm)
angle_sm = torch.clamp(1. - 0.25 * _angle_sm/math.pi, min=1e-6, max=1.)
with torch.no_grad():
cos_sm_mean = _angle_sm.mean()
angle_sm_mean = angle_sm.mean()
pos_sim_func = torch.unsqueeze(angle_sp+diff_norm_pos, dim=1) - 0.1 * penalty_function(sp_scores, scores)
neg_sim_func = torch.unsqueeze(angle_sm+diff_norm_neg, dim=1) - 0.1 * penalty_function(sm_scores, scores)
AVCE_scores = 0.
for i in range(pos_sim_func.size(0)):
AVCE_scores += pos_sim_func[i] - ALPHA * neg_sim_func.mean() \
-0.5 * BETA * pos_sim_func[i].pow(2) - 0.5 * GAMMA * neg_sim_func.pow(2).mean()
AVCE = AVCE_scores.mean(); del AVCE_scores
pcc_loss, ccc_loss, ccc_v, ccc_a = pcc_ccc_loss(correct_labels, scores)
MSE_v = MSE(scores[:,0], correct_labels[:,0])
MSE_a = MSE(scores[:,1], correct_labels[:,1])
enc_opt.zero_grad()
reg_opt.zero_grad()
spreg_opt.zero_grad()
loss = (MSE_v + MSE_a) - 1e-4 * AVCE.cuda() + (0.5 * pcc_loss + 0.5 * ccc_loss)
loss.backward(retain_graph=True)
enc_opt.step()
reg_opt.step()
spreg_opt.step()
### Metric-based regularization ###
enc_opt.zero_grad()
reg_opt.zero_grad()
vreg_opt.zero_grad()
z = encoder(inputs)
_, z_btl = regressor(z)
z_sp_btl = sp_layer(z_btl.cpu())
z_sm_btl = F.softmax(z_btl)
v_btl = v_regressor(z_btl)
v_sp_btl = v_regressor(z_sp_btl.cuda())
v_sm_btl = v_regressor(z_sm_btl)
# v_btl_pm, v_sp_btl = pair_mining(v_btl, v_sp_btl, fixed_sample=0, is_positive=1)
# v_btl_nm, v_sm_btl = pair_mining(v_btl, v_sm_btl, fixed_sample=0, is_positive=0)
holding_vector1 = torch.norm(vector_difference(v_sp_btl,v_btl), p=2, dim=1, keepdim=True)
holding_vector2 = torch.norm(vector_difference(v_sm_btl,v_btl), p=2, dim=1, keepdim=True)
one_vector = torch.ones_like(holding_vector1)
only_pushing_loss = torch.mean(F.relu(margin - torch.norm(v_sp_btl - v_sm_btl, p=2, dim=1).pow(2)))
reg_loss = only_pushing_loss.cuda() + 0.01 * (torch.mean(holding_vector1 - one_vector) + torch.mean(holding_vector2 - one_vector)).cuda()
reg_loss.backward()
enc_opt.step()
reg_opt.step()
vreg_opt.step()
if args.online_tracker:
wandb.log({
"loss": loss.item(),
'RPC': AVCE.item(),
"Enc_lr": aa, "Reg_lr": bb,
"epoch": epoch, "ccc_v": ccc_v.item(), "ccc_a": ccc_a.item(),
"MSE (v)": MSE_v, "MSE (a)": MSE_a
})
if cnt % args.freq == 0 or cnt == 50:
encoder_name = args.save_path + 'Enc_{}_{}.t7'.format(cnt, epoch)
regressor_name = args.save_path + 'Reg_{}_{}.t7'.format(cnt, epoch)
torch.save(encoder.state_dict(), encoder_name)
torch.save(regressor.state_dict(), regressor_name)
# Validation
interm_evaluation([encoder, regressor, sp_regressor], [encoder_name, regressor_name],
loaders, current_info, cnt)
cnt = cnt + 1
scheduler[0].step()
scheduler[1].step()
scheduler[2].step()
scheduler[3].step()
if __name__ == "__main__":
# ----------
# Initialize
# ----------
import warnings
warnings.filterwarnings("ignore")
use_gpu = torch.cuda.is_available()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
current_dir = os.getcwd()
current_time = strftime("%Y-%m-%d_%H:%M:%S", gmtime())
# Make log file
if args.online_tracker:
with open(current_dir+'/log/'+current_time+'.txt', 'w') as f:
f.writelines(["Title: AVCE (Model: {}\t Dataset: {}).\n".format(args.model, args.dataset)])
#------------
# Data loader
#------------
training_path = args.data_path + 'training_list.csv'
validation_path = args.data_path + 'validation_list.csv'
face_dataset = FaceDataset(csv_file=training_path,
root_dir=args.data_path,
transform=transforms.Compose([
transforms.Resize(256), transforms.RandomCrop(size=224),
transforms.ColorJitter(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),(0.229, 0.224, 0.225))
]), inFolder=None)
face_dataset_val = FaceDataset(csv_file=validation_path,
root_dir=args.data_path,
transform=transforms.Compose([
transforms.Resize(256), transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),(0.229, 0.224, 0.225))
]), inFolder=None)
if args.model == 'alexnet': batch_size = 256
elif args.model == 'resnet18': batch_size = 128
else: batch_size = 64
dataloader = DataLoader(face_dataset, batch_size=batch_size, shuffle=True)
dataloader_val = DataLoader(face_dataset_val, batch_size=64, shuffle=False)
loaders = {'train': dataloader, 'val': dataloader_val}
use_gpu = torch.cuda.is_available()
dataset_size = {'train': len(face_dataset), 'val': len(face_dataset_val)}
train_size = dataset_size['train']; val_size = dataset_size['val']
print(fg256("yellow", 'train | val size: {} | {}'.format(train_size, val_size)))
#----------------
# Build DNN model
#----------------
if args.model == 'alexnet':
encoder2 = encoder_Alex().cuda()
regressor = regressor_Alex().cuda()
elif args.model == 'resnet18':
encoder2 = encoder_R18().cuda()
regressor = regressor_R18().cuda()
elif args.model == 'resnet50':
print(fg256("green", 'Choose model:ResNet50'))
import pretrainedmodels
resnet50 = pretrainedmodels.__dict__['resnet50'](num_classes=1000, pretrained=None)
encoder2 = nn.DataParallel(resnet50).to(device)
regressor = regressor_R50().to(device)
elif args.model == 'resnet101':
print(fg256("green", 'Choose model:ResNet101'))
import pretrainedmodels
resnet101 = pretrainedmodels.__dict__['resnet101'](num_classes=1000, pretrained=None)
encoder2 = nn.DataParallel(resnet101).to(device)
regressor = regressor_R101().to(device)
sp_regressor = spregressor(discrete_opt=0).to(device)
v_regressor = vregressor().to(device)
enc_opt = optim.Adam(encoder2.parameters(), lr = 1e-4, betas = (0.5, 0.9))
reg_opt = optim.Adam(regressor.parameters(), lr = 1e-4, betas = (0.5, 0.9))
spreg_opt = optim.SGD(sp_regressor.parameters(), lr = 1e-2, momentum=0.9)
vreg_opt = optim.SGD(v_regressor.parameters(), lr = 1e-2, momentum=0.9)
enc_exp_lr_scheduler = lr_scheduler.MultiStepLR(enc_opt, milestones=[5e3,25e3,45e3,65e3,85e3], gamma=0.8)
reg_exp_lr_scheduler = lr_scheduler.MultiStepLR(reg_opt, milestones=[5e3,25e3,45e3,65e3,85e3], gamma=0.8)
spreg_exp_lr_scheduler = lr_scheduler.MultiStepLR(spreg_opt, milestones=[5e3,25e3,45e3,65e3,85e3], gamma=0.8)
vreg_exp_lr_scheduler = lr_scheduler.MultiStepLR(vreg_opt, milestones=[5e3,25e3,45e3,65e3,85e3], gamma=0.8)
#-----------------------
# Training or evaluation
#-----------------------
model_training([encoder2 , regressor , sp_regressor , v_regressor] ,
[enc_opt , reg_opt , spreg_opt , vreg_opt] ,
[enc_exp_lr_scheduler , reg_exp_lr_scheduler , spreg_exp_lr_scheduler , vreg_exp_lr_scheduler] ,
[current_dir, current_time], num_epochs=100)