diff --git a/.github/workflows/pre-commit.yml b/.github/workflows/pre-commit.yml index c58fd662..30cbfb35 100644 --- a/.github/workflows/pre-commit.yml +++ b/.github/workflows/pre-commit.yml @@ -25,4 +25,4 @@ jobs: python -m pip install pytest if [ -f requirements.txt ]; then pip install -r requirements.txt; fi python -m pip install . - - uses: pre-commit/action@v3.0.0 + - uses: pre-commit/action@v3.0.1 diff --git a/.github/workflows/python-package.yml b/.github/workflows/python-package.yml index 4806efed..be87da1e 100644 --- a/.github/workflows/python-package.yml +++ b/.github/workflows/python-package.yml @@ -3,11 +3,7 @@ name: Python package -on: - push: - branches: [ "main" ] - pull_request: - branches: [ "main" ] +on: [push] jobs: build: @@ -18,18 +14,22 @@ jobs: matrix: python-version: ["3.10", "3.11"] + steps: - - uses: actions/checkout@v3 - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v3 - with: - python-version: ${{ matrix.python-version }} - - name: Install dependencies - run: | - python -m pip install --upgrade pip - python -m pip install pytest - if [ -f requirements.txt ]; then pip install -r requirements.txt; fi - python -m pip install . - - name: Test with pytest - run: | - pytest + - uses: actions/checkout@v4 + + - name: Install uv + uses: astral-sh/setup-uv@v3 + + - name: Set up Python ${{ matrix.python-version }} + run: uv python install ${{ matrix.python-version }} + + - name: Install the project + run: uv sync --all-extras --dev + + - name: Run tests + # For example, using `pytest` + run: uv run pytest + + - name: Run build + run: uv build diff --git a/.github/workflows/python-publish.yml b/.github/workflows/python-publish.yml index 30f2bc2f..b892d49e 100644 --- a/.github/workflows/python-publish.yml +++ b/.github/workflows/python-publish.yml @@ -20,20 +20,24 @@ jobs: runs-on: ubuntu-latest + steps: - - uses: actions/checkout@v3 - - name: Set up Python - uses: actions/setup-python@v3 - with: - python-version: '3.x' - - name: Install dependencies - run: | - python -m pip install --upgrade pip - pip install build - - name: Build package - run: python -m build - - name: Publish package - uses: pypa/gh-action-pypi-publish@v1.8.4 - with: - user: __token__ - password: ${{ secrets.PYPI_API_TOKEN }} + - uses: actions/checkout@v4 + + - name: Install uv + uses: astral-sh/setup-uv@v3 + + - name: Set up Python ${{ matrix.python-version }} + run: uv python install ${{ matrix.python-version }} + + - name: Install the project + run: uv sync --all-extras --dev + + - name: Run build + run: uv build + + - name: Publish package + uses: pypa/gh-action-pypi-publish@v1.8.4 + with: + user: __token__ + password: ${{ secrets.PYPI_API_TOKEN }} diff --git a/docs/tutorials/naming_system.md b/docs/tutorials/naming_system.md new file mode 100644 index 00000000..e69de29b diff --git a/example/GW150914.py b/example/GW150914.py deleted file mode 100644 index 559b5b7c..00000000 --- a/example/GW150914.py +++ /dev/null @@ -1,138 +0,0 @@ -import time - -import jax -import jax.numpy as jnp - -from jimgw.jim import Jim -from jimgw.prior import Composite, Unconstrained_Uniform -from jimgw.single_event.detector import H1, L1 -from jimgw.single_event.likelihood import TransientLikelihoodFD -from jimgw.single_event.waveform import RippleIMRPhenomD -from flowMC.strategy.optimization import optimization_Adam - -jax.config.update("jax_enable_x64", True) - -########################################### -########## First we grab data ############# -########################################### - -total_time_start = time.time() - -# first, fetch a 4s segment centered on GW150914 -gps = 1126259462.4 -duration = 4 -post_trigger_duration = 2 -start_pad = duration - post_trigger_duration -end_pad = post_trigger_duration -fmin = 20.0 -fmax = 1024.0 - -ifos = ["H1", "L1"] - -H1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) -L1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) - -Mc_prior = Unconstrained_Uniform(10.0, 80.0, naming=["M_c"]) -q_prior = Unconstrained_Uniform( - 0.125, - 1.0, - naming=["q"], - transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, -) -s1z_prior = Unconstrained_Uniform(-1.0, 1.0, naming=["s1_z"]) -s2z_prior = Unconstrained_Uniform(-1.0, 1.0, naming=["s2_z"]) -dL_prior = Unconstrained_Uniform(0.0, 2000.0, naming=["d_L"]) -t_c_prior = Unconstrained_Uniform(-0.05, 0.05, naming=["t_c"]) -phase_c_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) -cos_iota_prior = Unconstrained_Uniform( - -1.0, - 1.0, - naming=["cos_iota"], - transforms={ - "cos_iota": ( - "iota", - lambda params: jnp.arccos( - jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) -psi_prior = Unconstrained_Uniform(0.0, jnp.pi, naming=["psi"]) -ra_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["ra"]) -sin_dec_prior = Unconstrained_Uniform( - -1.0, - 1.0, - naming=["sin_dec"], - transforms={ - "sin_dec": ( - "dec", - lambda params: jnp.arcsin( - jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) - -prior = Composite( - [ - Mc_prior, - q_prior, - s1z_prior, - s2z_prior, - dL_prior, - t_c_prior, - phase_c_prior, - cos_iota_prior, - psi_prior, - ra_prior, - sin_dec_prior, - ] -) -likelihood = TransientLikelihoodFD( - [H1, L1], - waveform=RippleIMRPhenomD(), - trigger_time=gps, - duration=4, - post_trigger_duration=2, -) - - -mass_matrix = jnp.eye(11) -mass_matrix = mass_matrix.at[1, 1].set(1e-3) -mass_matrix = mass_matrix.at[5, 5].set(1e-3) -local_sampler_arg = {"step_size": mass_matrix * 3e-3} - -Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1) - -import optax -n_epochs = 20 -n_loop_training = 100 -total_epochs = n_epochs * n_loop_training -start = total_epochs//10 -learning_rate = optax.polynomial_schedule( - 1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start -) - - -jim = Jim( - likelihood, - prior, - n_loop_training=n_loop_training, - n_loop_production=20, - n_local_steps=10, - n_global_steps=1000, - n_chains=500, - n_epochs=n_epochs, - learning_rate=learning_rate, - n_max_examples=30000, - n_flow_samples=100000, - momentum=0.9, - batch_size=30000, - use_global=True, - train_thinning=1, - output_thinning=10, - local_sampler_arg=local_sampler_arg, - strategies=[Adam_optimizer,"default"], -) - -jim.sample(jax.random.PRNGKey(42)) diff --git a/example/GW150914_IMRPhenomD.py b/example/GW150914_IMRPhenomD.py new file mode 100644 index 00000000..9a9b9e09 --- /dev/null +++ b/example/GW150914_IMRPhenomD.py @@ -0,0 +1,167 @@ +import time + +import jax +import jax.numpy as jnp + +from jimgw.jim import Jim +from jimgw.jim import Jim +from jimgw.prior import ( + CombinePrior, + UniformPrior, + CosinePrior, + SinePrior, + PowerLawPrior, + UniformSpherePrior, +) +from jimgw.single_event.detector import H1, L1 +from jimgw.single_event.likelihood import TransientLikelihoodFD +from jimgw.single_event.waveform import RippleIMRPhenomD +from jimgw.transforms import BoundToUnbound +from jimgw.single_event.transforms import ( + SkyFrameToDetectorFrameSkyPositionTransform, + SphereSpinToCartesianSpinTransform, + MassRatioToSymmetricMassRatioTransform, + DistanceToSNRWeightedDistanceTransform, + GeocentricArrivalTimeToDetectorArrivalTimeTransform, + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform, +) +from jimgw.single_event.utils import Mc_q_to_m1_m2 +from flowMC.strategy.optimization import optimization_Adam + +jax.config.update("jax_enable_x64", True) + +########################################### +########## First we grab data ############# +########################################### + +total_time_start = time.time() + +# first, fetch a 4s segment centered on GW150914 +gps = 1126259462.4 +start = gps - 2 +end = gps + 2 +fmin = 20.0 +fmax = 1024.0 + +ifos = [H1, L1] + +H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) +L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) + +waveform = RippleIMRPhenomD(f_ref=20) + +########################################### +########## Set up priors ################## +########################################### + +prior = [] + +# Mass prior +M_c_min, M_c_max = 10.0, 80.0 +q_min, q_max = 0.125, 1.0 +Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"]) +q_prior = UniformPrior(q_min, q_max, parameter_names=["q"]) + +prior = prior + [Mc_prior, q_prior] + +# Spin prior +s1_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"]) +s2_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"]) +iota_prior = SinePrior(parameter_names=["iota"]) + +prior = prior + [ + s1_prior, + s2_prior, + iota_prior, +] + +# Extrinsic prior +dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"]) +t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"]) +phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) +psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) +ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) +dec_prior = CosinePrior(parameter_names=["dec"]) + +prior = prior + [ + dL_prior, + t_c_prior, + phase_c_prior, + psi_prior, + ra_prior, + dec_prior, +] + +prior = CombinePrior(prior) + +# Defining Transforms + +sample_transforms = [ + DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax), + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]), + GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]), + SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), + BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max), + BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max), + BoundToUnbound(name_mapping = (["s1_z"], ["s1_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0), + BoundToUnbound(name_mapping = (["s2_z"], ["s2_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0), + BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["phase_det"], ["phase_det_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), +] + +likelihood_transforms = [ + MassRatioToSymmetricMassRatioTransform, +] + + +likelihood = TransientLikelihoodFD( + [H1, L1], waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2 +) + + +mass_matrix = jnp.eye(prior.n_dim) +# mass_matrix = mass_matrix.at[1, 1].set(1e-3) +# mass_matrix = mass_matrix.at[9, 9].set(1e-3) +local_sampler_arg = {"step_size": mass_matrix * 1e-3} + +Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1) + +import optax + +n_epochs = 20 +n_loop_training = 100 +total_epochs = n_epochs * n_loop_training +start = total_epochs // 10 +learning_rate = optax.polynomial_schedule( + 1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start +) + +jim = Jim( + likelihood, + prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_loop_training=n_loop_training, + n_loop_production=20, + n_local_steps=10, + n_global_steps=1000, + n_chains=500, + n_epochs=n_epochs, + learning_rate=learning_rate, + n_max_examples=30000, + n_flow_sample=100000, + momentum=0.9, + batch_size=30000, + use_global=True, + keep_quantile=0.0, + train_thinning=1, + output_thinning=10, + local_sampler_arg=local_sampler_arg, + # strategies=[Adam_optimizer,"default"], +) + + +jim.sample(jax.random.PRNGKey(42)) diff --git a/example/GW150914_IMRPhenomPV2.py b/example/GW150914_IMRPhenomPV2.py new file mode 100644 index 00000000..c291adbf --- /dev/null +++ b/example/GW150914_IMRPhenomPV2.py @@ -0,0 +1,173 @@ +import time + +import jax +import jax.numpy as jnp + +from jimgw.jim import Jim +from jimgw.jim import Jim +from jimgw.prior import ( + CombinePrior, + UniformPrior, + CosinePrior, + SinePrior, + PowerLawPrior, + UniformSpherePrior, +) +from jimgw.single_event.detector import H1, L1 +from jimgw.single_event.likelihood import TransientLikelihoodFD +from jimgw.single_event.waveform import RippleIMRPhenomPv2 +from jimgw.transforms import BoundToUnbound +from jimgw.single_event.transforms import ( + SkyFrameToDetectorFrameSkyPositionTransform, + SphereSpinToCartesianSpinTransform, + MassRatioToSymmetricMassRatioTransform, + DistanceToSNRWeightedDistanceTransform, + GeocentricArrivalTimeToDetectorArrivalTimeTransform, + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform, +) +from jimgw.single_event.utils import Mc_q_to_m1_m2 +from flowMC.strategy.optimization import optimization_Adam + +jax.config.update("jax_enable_x64", True) + +########################################### +########## First we grab data ############# +########################################### + +total_time_start = time.time() + +# first, fetch a 4s segment centered on GW150914 +gps = 1126259462.4 +start = gps - 2 +end = gps + 2 +fmin = 20.0 +fmax = 1024.0 + +ifos = [H1, L1] + +H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) +L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) + +waveform = RippleIMRPhenomPv2(f_ref=20) + +########################################### +########## Set up priors ################## +########################################### + +prior = [] + +# Mass prior +M_c_min, M_c_max = 10.0, 80.0 +q_min, q_max = 0.125, 1.0 +Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"]) +q_prior = UniformPrior(q_min, q_max, parameter_names=["q"]) + +prior = prior + [Mc_prior, q_prior] + +# Spin prior +s1_prior = UniformSpherePrior(parameter_names=["s1"]) +s2_prior = UniformSpherePrior(parameter_names=["s2"]) +iota_prior = SinePrior(parameter_names=["iota"]) + +prior = prior + [ + s1_prior, + s2_prior, + iota_prior, +] + +# Extrinsic prior +dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"]) +t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"]) +phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) +psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) +ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) +dec_prior = CosinePrior(parameter_names=["dec"]) + +prior = prior + [ + dL_prior, + t_c_prior, + phase_c_prior, + psi_prior, + ra_prior, + dec_prior, +] + +prior = CombinePrior(prior) + +# Defining Transforms + +sample_transforms = [ + DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax), + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]), + GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]), + SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), + BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max), + BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max), + BoundToUnbound(name_mapping = (["s1_phi"], ["s1_phi_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["s2_phi"], ["s2_phi_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s1_theta"], ["s1_theta_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s2_theta"], ["s2_theta_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s1_mag"], ["s1_mag_unbounded"]) , original_lower_bound=0.0, original_upper_bound=0.99), + BoundToUnbound(name_mapping = (["s2_mag"], ["s2_mag_unbounded"]) , original_lower_bound=0.0, original_upper_bound=0.99), + BoundToUnbound(name_mapping = (["phase_det"], ["phase_det_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), +] + +likelihood_transforms = [ + MassRatioToSymmetricMassRatioTransform, + SphereSpinToCartesianSpinTransform("s1"), + SphereSpinToCartesianSpinTransform("s2"), +] + + +likelihood = TransientLikelihoodFD( + [H1, L1], waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2 +) + + +mass_matrix = jnp.eye(prior.n_dim) +# mass_matrix = mass_matrix.at[1, 1].set(1e-3) +# mass_matrix = mass_matrix.at[9, 9].set(1e-3) +local_sampler_arg = {"step_size": mass_matrix * 1e-3} + +Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1) + +import optax + +n_epochs = 20 +n_loop_training = 100 +total_epochs = n_epochs * n_loop_training +start = total_epochs // 10 +learning_rate = optax.polynomial_schedule( + 1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start +) + +jim = Jim( + likelihood, + prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_loop_training=n_loop_training, + n_loop_production=20, + n_local_steps=10, + n_global_steps=1000, + n_chains=500, + n_epochs=n_epochs, + learning_rate=learning_rate, + n_max_examples=30000, + n_flow_sample=100000, + momentum=0.9, + batch_size=30000, + use_global=True, + keep_quantile=0.0, + train_thinning=1, + output_thinning=10, + local_sampler_arg=local_sampler_arg, + # strategies=[Adam_optimizer,"default"], +) + + +jim.sample(jax.random.PRNGKey(42)) diff --git a/example/GW150914_PV2.py b/example/GW150914_PV2.py deleted file mode 100644 index 06209ba6..00000000 --- a/example/GW150914_PV2.py +++ /dev/null @@ -1,165 +0,0 @@ -import time - -import jax -import jax.numpy as jnp - -from jimgw.jim import Jim -from jimgw.prior import Composite, Sphere, Unconstrained_Uniform -from jimgw.single_event.detector import H1, L1 -from jimgw.single_event.likelihood import TransientLikelihoodFD -from jimgw.single_event.waveform import RippleIMRPhenomPv2 -from flowMC.strategy.optimization import optimization_Adam - - -jax.config.update("jax_enable_x64", True) - -########################################### -########## First we grab data ############# -########################################### - -total_time_start = time.time() - -# first, fetch a 4s segment centered on GW150914 -gps = 1126259462.4 -start = gps - 2 -end = gps + 2 -fmin = 20.0 -fmax = 1024.0 - -ifos = ["H1", "L1"] - -H1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) -L1.load_data(gps, 2, 2, fmin, fmax, psd_pad=16, tukey_alpha=0.2) - -waveform = RippleIMRPhenomPv2(f_ref=20) - -########################################### -########## Set up priors ################## -########################################### - -Mc_prior = Unconstrained_Uniform(10.0, 80.0, naming=["M_c"]) -q_prior = Unconstrained_Uniform( - 0.125, - 1.0, - naming=["q"], - transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, -) -s1_prior = Sphere(naming="s1") -s2_prior = Sphere(naming="s2") -dL_prior = Unconstrained_Uniform(0.0, 2000.0, naming=["d_L"]) -t_c_prior = Unconstrained_Uniform(-0.05, 0.05, naming=["t_c"]) -phase_c_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) -cos_iota_prior = Unconstrained_Uniform( - -1.0, - 1.0, - naming=["cos_iota"], - transforms={ - "cos_iota": ( - "iota", - lambda params: jnp.arccos( - jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) -psi_prior = Unconstrained_Uniform(0.0, jnp.pi, naming=["psi"]) -ra_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["ra"]) -sin_dec_prior = Unconstrained_Uniform( - -1.0, - 1.0, - naming=["sin_dec"], - transforms={ - "sin_dec": ( - "dec", - lambda params: jnp.arcsin( - jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) - -prior = Composite( - [ - Mc_prior, - q_prior, - s1_prior, - s2_prior, - dL_prior, - t_c_prior, - phase_c_prior, - cos_iota_prior, - psi_prior, - ra_prior, - sin_dec_prior, - ], -) - -epsilon = 1e-3 -bounds = jnp.array( - [ - [10.0, 80.0], - [0.125, 1.0], - [0, jnp.pi], - [0, 2 * jnp.pi], - [0.0, 1.0], - [0, jnp.pi], - [0, 2 * jnp.pi], - [0.0, 1.0], - [0.0, 2000], - [-0.05, 0.05], - [0.0, 2 * jnp.pi], - [-1.0, 1.0], - [0.0, jnp.pi], - [0.0, 2 * jnp.pi], - [-1.0, 1.0], - ] -) + jnp.array([[epsilon, -epsilon]]) - -likelihood = TransientLikelihoodFD( - [H1, L1], waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2 -) -# likelihood = HeterodynedTransientLikelihoodFD([H1, L1], prior=prior, bounds=bounds, waveform=waveform, trigger_time=gps, duration=4, post_trigger_duration=2) - - -mass_matrix = jnp.eye(prior.n_dim) -mass_matrix = mass_matrix.at[1, 1].set(1e-3) -mass_matrix = mass_matrix.at[9, 9].set(1e-3) -local_sampler_arg = {"step_size": mass_matrix * 1e-3} - -Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1, bounds=bounds) - -import optax -n_epochs = 20 -n_loop_training = 100 -total_epochs = n_epochs * n_loop_training -start = total_epochs//10 -learning_rate = optax.polynomial_schedule( - 1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start -) - -jim = Jim( - likelihood, - prior, - n_loop_training=n_loop_training, - n_loop_production=20, - n_local_steps=10, - n_global_steps=1000, - n_chains=500, - n_epochs=n_epochs, - learning_rate=learning_rate, - n_max_examples=30000, - n_flow_sample=100000, - momentum=0.9, - batch_size=30000, - use_global=True, - keep_quantile=0.0, - train_thinning=1, - output_thinning=10, - local_sampler_arg=local_sampler_arg, - # strategies=[Adam_optimizer,"default"], -) - -import numpy as np -# chains = np.load('./GW150914_init.npz')['chain'] - -jim.sample(jax.random.PRNGKey(42))#,initial_guess=chains) diff --git a/example/GW150914_TaylorF2.py b/example/GW150914_TaylorF2.py deleted file mode 100644 index 2520b794..00000000 --- a/example/GW150914_TaylorF2.py +++ /dev/null @@ -1,155 +0,0 @@ -import psutil -p = psutil.Process() -p.cpu_affinity([0]) -import os -os.environ["CUDA_VISIBLE_DEVICES"] = "2" -os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.10" - -import time - -import jax -import jax.numpy as jnp -import optax - -from jimgw.jim import Jim -from jimgw.prior import Composite, Unconstrained_Uniform -from jimgw.single_event.detector import H1, L1 -from jimgw.single_event.likelihood import TransientLikelihoodFD -from jimgw.single_event.waveform import RippleTaylorF2 -from flowMC.strategy.optimization import optimization_Adam - -jax.config.update("jax_enable_x64", True) - -########################################### -########## First we grab data ############# -########################################### - -total_time_start = time.time() - -# first, fetch a 4s segment centered on GW150914 -gps = 1126259462.4 -duration = 4 -post_trigger_duration = 2 -start_pad = duration - post_trigger_duration -end_pad = post_trigger_duration -fmin = 20.0 -fmax = 1024.0 - -ifos = ["H1", "L1"] - -H1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) -L1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) - -Mc_prior = Unconstrained_Uniform(10.0, 80.0, naming=["M_c"]) -q_prior = Unconstrained_Uniform( - 0.125, - 1.0, - naming=["q"], - transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, -) -s1z_prior = Unconstrained_Uniform(-1.0, 1.0, naming=["s1_z"]) -s2z_prior = Unconstrained_Uniform(-1.0, 1.0, naming=["s2_z"]) -lambda1_prior = Unconstrained_Uniform(0.0, 5000.0, naming=["lambda_1"]) -lambda2_prior = Unconstrained_Uniform(0.0, 5000.0, naming=["lambda_2"]) -dL_prior = Unconstrained_Uniform(0.0, 2000.0, naming=["d_L"]) -t_c_prior = Unconstrained_Uniform(-0.05, 0.05, naming=["t_c"]) -phase_c_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) -cos_iota_prior = Unconstrained_Uniform( - -1.0, - 1.0, - naming=["cos_iota"], - transforms={ - "cos_iota": ( - "iota", - lambda params: jnp.arccos( - jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) -psi_prior = Unconstrained_Uniform(0.0, jnp.pi, naming=["psi"]) -ra_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["ra"]) -sin_dec_prior = Unconstrained_Uniform( - -1.0, - 1.0, - naming=["sin_dec"], - transforms={ - "sin_dec": ( - "dec", - lambda params: jnp.arcsin( - jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) - -prior = Composite( - [ - Mc_prior, - q_prior, - s1z_prior, - s2z_prior, - lambda1_prior, - lambda2_prior, - dL_prior, - t_c_prior, - phase_c_prior, - cos_iota_prior, - psi_prior, - ra_prior, - sin_dec_prior, - ] -) -likelihood = TransientLikelihoodFD( - [H1, L1], - waveform=RippleTaylorF2(), - trigger_time=gps, - duration=4, - post_trigger_duration=2, -) - -n_dim = 13 -mass_matrix = jnp.eye(n_dim) -mass_matrix = mass_matrix.at[0,0].set(1e-5) -mass_matrix = mass_matrix.at[1,1].set(1e-4) -mass_matrix = mass_matrix.at[2,2].set(1e-3) -mass_matrix = mass_matrix.at[3,3].set(1e-3) -mass_matrix = mass_matrix.at[7,7].set(1e-5) -mass_matrix = mass_matrix.at[11,11].set(1e-2) -mass_matrix = mass_matrix.at[12,12].set(1e-2) -local_sampler_arg = {"step_size": mass_matrix * 1e-3} - -# Build the learning rate scheduler - -n_loop_training = 100 -n_epochs = 100 -total_epochs = n_epochs * n_loop_training -start = int(total_epochs / 10) -start_lr = 1e-3 -end_lr = 1e-5 -power = 4.0 -schedule_fn = optax.polynomial_schedule( - start_lr, end_lr, power, total_epochs-start, transition_begin=start) - -jim = Jim( - likelihood, - prior, - n_loop_training=n_loop_training, - n_loop_production=20, - n_local_steps=10, - n_global_steps=1000, - n_chains=1000, - n_epochs=n_epochs, - learning_rate=schedule_fn, - n_max_examples=30000, - n_flow_samples=100000, - momentum=0.9, - batch_size=30000, - use_global=True, - train_thinning=20, - output_thinning=50, - local_sampler_arg=local_sampler_arg, -) - -jim.sample(jax.random.PRNGKey(24)) -jim.print_summary() diff --git a/example/GW150914_heterodyne.py b/example/GW150914_heterodyne.py deleted file mode 100644 index c1faed03..00000000 --- a/example/GW150914_heterodyne.py +++ /dev/null @@ -1,158 +0,0 @@ -import time - -import jax -import jax.numpy as jnp - -from jimgw.jim import Jim -from jimgw.prior import Composite, Unconstrained_Uniform -from jimgw.single_event.detector import H1, L1 -from jimgw.single_event.likelihood import ( - HeterodynedTransientLikelihoodFD, - TransientLikelihoodFD, -) -from jimgw.single_event.waveform import RippleIMRPhenomD -from flowMC.strategy.optimization import optimization_Adam - -jax.config.update("jax_enable_x64", True) - -########################################### -########## First we grab data ############# -########################################### - -total_time_start = time.time() - -# first, fetch a 4s segment centered on GW150914 -gps = 1126259462.4 -duration = 4 -post_trigger_duration = 2 -start_pad = duration - post_trigger_duration -end_pad = post_trigger_duration -fmin = 20.0 -fmax = 1024.0 - -ifos = ["H1", "L1"] - -H1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) -L1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) - -Mc_prior = Unconstrained_Uniform(10.0, 80.0, naming=["M_c"]) -q_prior = Unconstrained_Uniform( - 0.125, - 1.0, - naming=["q"], - transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, -) -s1z_prior = Unconstrained_Uniform(-1.0, 1.0, naming=["s1_z"]) -s2z_prior = Unconstrained_Uniform(-1.0, 1.0, naming=["s2_z"]) -dL_prior = Unconstrained_Uniform(0.0, 2000.0, naming=["d_L"]) -t_c_prior = Unconstrained_Uniform(-0.05, 0.05, naming=["t_c"]) -phase_c_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) -cos_iota_prior = Unconstrained_Uniform( - -1.0, - 1.0, - naming=["cos_iota"], - transforms={ - "cos_iota": ( - "iota", - lambda params: jnp.arccos( - jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) -psi_prior = Unconstrained_Uniform(0.0, jnp.pi, naming=["psi"]) -ra_prior = Unconstrained_Uniform(0.0, 2 * jnp.pi, naming=["ra"]) -sin_dec_prior = Unconstrained_Uniform( - -1.0, - 1.0, - naming=["sin_dec"], - transforms={ - "sin_dec": ( - "dec", - lambda params: jnp.arcsin( - jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) - -prior = Composite( - [ - Mc_prior, - q_prior, - s1z_prior, - s2z_prior, - dL_prior, - t_c_prior, - phase_c_prior, - cos_iota_prior, - psi_prior, - ra_prior, - sin_dec_prior, - ] -) - -bounds = jnp.array( - [ - [10.0, 80.0], - [0.125, 1.0], - [-1.0, 1.0], - [-1.0, 1.0], - [0.0, 2000.0], - [-0.05, 0.05], - [0.0, 2 * jnp.pi], - [-1.0, 1.0], - [0.0, jnp.pi], - [0.0, 2 * jnp.pi], - [-1.0, 1.0], - ] -) - -likelihood = HeterodynedTransientLikelihoodFD( - [H1, L1], - prior=prior, - bounds=bounds, - waveform=RippleIMRPhenomD(), - trigger_time=gps, - duration=duration, - post_trigger_duration=post_trigger_duration, - n_steps=3000, -) - -mass_matrix = jnp.eye(11) -mass_matrix = mass_matrix.at[1, 1].set(1e-3) -mass_matrix = mass_matrix.at[5, 5].set(1e-3) -local_sampler_arg = {"step_size": mass_matrix * 3e-3} - -Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1) -import optax -n_epochs = 20 -n_loop_training = 100 -total_epochs = n_epochs * n_loop_training -start = total_epochs//10 -learning_rate = optax.polynomial_schedule( - 1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start -) - -jim = Jim( - likelihood, - prior, - n_loop_training=n_loop_training, - n_loop_production=20, - n_local_steps=10, - n_global_steps=1000, - n_chains=500, - n_epochs=n_epochs, - learning_rate=learning_rate, - n_max_examples=30000, - n_flow_sample=100000, - momentum=0.9, - batch_size=30000, - use_global=True, - keep_quantile=0.0, - train_thinning=1, - output_thinning=10, - local_sampler_arg=local_sampler_arg, - # strategies=[Adam_optimizer,"default"], -) -jim.sample(jax.random.PRNGKey(42)) diff --git a/example/GW170817.py b/example/GW170817.py deleted file mode 100644 index bf4c6710..00000000 --- a/example/GW170817.py +++ /dev/null @@ -1,104 +0,0 @@ -import time - -import jax -import jax.numpy as jnp -from gwosc.datasets import event_gps - -from jimgw.jim import Jim -from jimgw.prior import Uniform -from jimgw.single_event.detector import H1, L1, V1 -from jimgw.single_event.likelihood import HeterodynedTransientLikelihoodFD -from jimgw.single_event.waveform import RippleIMRPhenomD - -jax.config.update("jax_enable_x64", True) - -########################################### -########## First we grab data ############# -########################################### - -total_time_start = time.time() - -gps = event_gps("GW170817") -duration = 128 -post_trigger_duration = 32 -start_pad = duration - post_trigger_duration -end_pad = post_trigger_duration -fmin = 20.0 -fmax = 1024.0 - -ifos = ["H1", "L1"]#, "V1"] - -H1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=4*duration, tukey_alpha=0.05, gwpy_kwargs={"version": 2, "cache": False}) -L1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=4*duration, tukey_alpha=0.05, gwpy_kwargs={"version": 2, "cache": False}) -# V1.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.05) - -prior = Uniform( - xmin=[1.18, 0.125, -0.3, -0.3, 1., -0.1, 0.0, -1, 0.0, 0.0, -1.0], - xmax=[1.21, 1.0, 0.3, 0.3, 75., 0.1, 2 * jnp.pi, 1.0, jnp.pi, 2 * jnp.pi, 1.0], - naming=[ - "M_c", - "q", - "s1_z", - "s2_z", - "d_L", - "t_c", - "phase_c", - "cos_iota", - "psi", - "ra", - "sin_dec", - ], - transforms={ - "q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2), - "cos_iota": ( - "iota", - lambda params: jnp.arccos( - jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ), - "sin_dec": ( - "dec", - lambda params: jnp.arcsin( - jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ), - }, # sin and arcsin are periodize cos_iota and sin_dec -) - -likelihood = HeterodynedTransientLikelihoodFD( - [H1], - prior=prior, - bounds=[prior.xmin, prior.xmax], - waveform=RippleIMRPhenomD(), - trigger_time=gps, - duration=duration, - post_trigger_duration=post_trigger_duration, - n_loops=1000 -) - -# mass_matrix = jnp.eye(11) -# mass_matrix = mass_matrix.at[1, 1].set(1e-3) -# mass_matrix = mass_matrix.at[5, 5].set(1e-3) -# local_sampler_arg = {"step_size": mass_matrix * 3e-3} - -# jim = Jim( -# likelihood, -# prior, -# n_loop_training=100, -# n_loop_production=10, -# n_local_steps=150, -# n_global_steps=150, -# n_chains=500, -# n_epochs=50, -# learning_rate=0.001, -# max_samples=45000, -# momentum=0.9, -# batch_size=50000, -# use_global=True, -# keep_quantile=0.0, -# train_thinning=1, -# output_thinning=10, -# local_sampler_arg=local_sampler_arg, -# ) - -# jim.sample(jax.random.PRNGKey(42)) diff --git a/example/GW170817_IMRPhenomD.py b/example/GW170817_IMRPhenomD.py new file mode 100644 index 00000000..d3aca76d --- /dev/null +++ b/example/GW170817_IMRPhenomD.py @@ -0,0 +1,184 @@ +import time + +import jax +import jax.numpy as jnp + +from jimgw.jim import Jim +from jimgw.jim import Jim +from jimgw.prior import ( + CombinePrior, + UniformPrior, + CosinePrior, + SinePrior, + PowerLawPrior, + UniformSpherePrior, +) +from jimgw.single_event.detector import H1, L1, V1 +from jimgw.single_event.likelihood import TransientLikelihoodFD, HeterodynedTransientLikelihoodFD +from jimgw.single_event.waveform import RippleIMRPhenomD +from jimgw.transforms import BoundToUnbound +from jimgw.single_event.transforms import ( + SkyFrameToDetectorFrameSkyPositionTransform, + SphereSpinToCartesianSpinTransform, + MassRatioToSymmetricMassRatioTransform, + DistanceToSNRWeightedDistanceTransform, + GeocentricArrivalTimeToDetectorArrivalTimeTransform, + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform, +) +from jimgw.single_event.utils import Mc_q_to_m1_m2 +from flowMC.strategy.optimization import optimization_Adam + +jax.config.update("jax_enable_x64", True) + +########################################### +########## First we grab data ############# +########################################### + +total_time_start = time.time() + +# first, fetch a 4s segment centered on GW150914 + +gps = 1187008882.43 +trigger_time = gps +fmin = 20 +fmax = 2048 +minimum_frequency = fmin +maximum_frequency = fmax +duration = 128 +post_trigger_duration = 2 +epoch = duration - post_trigger_duration +f_ref = fmin + +ifos = [H1, L1, V1] + + +tukey_alpha = 2 / (duration / 2) +H1.load_data( + gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha +) +L1.load_data( + gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha +) +V1.load_data( + gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha +) + + +waveform = RippleIMRPhenomD(f_ref=f_ref) + +########################################### +########## Set up priors ################## +########################################### + +prior = [] + +# Mass prior +M_c_min, M_c_max = 1.18, 1.21 +q_min, q_max = 0.125, 1.0 +Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"]) +q_prior = UniformPrior(q_min, q_max, parameter_names=["q"]) + +prior = prior + [Mc_prior, q_prior] + +# Spin prior +s1_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"]) +s2_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"]) +iota_prior = SinePrior(parameter_names=["iota"]) + +prior = prior + [ + s1_prior, + s2_prior, + iota_prior, +] + +# Extrinsic prior +dL_prior = PowerLawPrior(1.0, 75.0, 2.0, parameter_names=["d_L"]) +t_c_prior = UniformPrior(-0.1, 0.1, parameter_names=["t_c"]) +phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) +psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) +ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) +dec_prior = CosinePrior(parameter_names=["dec"]) + +prior = prior + [ + dL_prior, + t_c_prior, + phase_c_prior, + psi_prior, + ra_prior, + dec_prior, +] + +prior = CombinePrior(prior) + +# Defining Transforms + +sample_transforms = [ + DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax), + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]), + GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]), + SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), + BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max), + BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max), + BoundToUnbound(name_mapping = (["s1_z"], ["s1_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0), + BoundToUnbound(name_mapping = (["s2_z"], ["s2_z_unbounded"]) , original_lower_bound=-1.0, original_upper_bound=1.0), + BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["phase_det"], ["phase_det_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), +] + +likelihood_transforms = [ + MassRatioToSymmetricMassRatioTransform, +] + + +#likelihood = TransientLikelihoodFD( +# [H1, L1, V1], waveform=waveform, trigger_time=trigger_time, duration=duration, post_trigger_duration=post_trigger_duration +#) + +likelihood = HeterodynedTransientLikelihoodFD(ifos, waveform=waveform, n_bins = 1000, trigger_time=trigger_time, duration=duration, post_trigger_duration=post_trigger_duration, prior = prior, sample_transforms = sample_transforms, likelihood_transforms = likelihood_transforms, popsize = 10, n_steps = 50) + +mass_matrix = jnp.eye(prior.n_dim) +# mass_matrix = mass_matrix.at[1, 1].set(1e-3) +# mass_matrix = mass_matrix.at[9, 9].set(1e-3) +local_sampler_arg = {"step_size": mass_matrix * 1e-3} + +Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1) + +import optax + +n_epochs = 20 +n_loop_training = 100 +total_epochs = n_epochs * n_loop_training +start = total_epochs // 10 +learning_rate = optax.polynomial_schedule( + 1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start +) + +jim = Jim( + likelihood, + prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_loop_training=n_loop_training, + n_loop_production=20, + n_local_steps=10, + n_global_steps=1000, + n_chains=500, + n_epochs=n_epochs, + learning_rate=learning_rate, + n_max_examples=30000, + n_flow_sample=100000, + momentum=0.9, + batch_size=30000, + use_global=True, + keep_quantile=0.0, + train_thinning=1, + output_thinning=10, + local_sampler_arg=local_sampler_arg, + # strategies=[Adam_optimizer,"default"], +) + + +jim.sample(jax.random.PRNGKey(42)) diff --git a/example/GW170817_IMRPhenomPV2.py b/example/GW170817_IMRPhenomPV2.py new file mode 100644 index 00000000..55bd211b --- /dev/null +++ b/example/GW170817_IMRPhenomPV2.py @@ -0,0 +1,190 @@ +import time + +import jax +import jax.numpy as jnp + +from jimgw.jim import Jim +from jimgw.jim import Jim +from jimgw.prior import ( + CombinePrior, + UniformPrior, + CosinePrior, + SinePrior, + PowerLawPrior, + UniformSpherePrior, +) +from jimgw.single_event.detector import H1, L1, V1 +from jimgw.single_event.likelihood import TransientLikelihoodFD, HeterodynedTransientLikelihoodFD +from jimgw.single_event.waveform import RippleIMRPhenomPv2 +from jimgw.transforms import BoundToUnbound +from jimgw.single_event.transforms import ( + SkyFrameToDetectorFrameSkyPositionTransform, + SphereSpinToCartesianSpinTransform, + MassRatioToSymmetricMassRatioTransform, + DistanceToSNRWeightedDistanceTransform, + GeocentricArrivalTimeToDetectorArrivalTimeTransform, + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform, +) +from jimgw.single_event.utils import Mc_q_to_m1_m2 +from flowMC.strategy.optimization import optimization_Adam + +jax.config.update("jax_enable_x64", True) + +########################################### +########## First we grab data ############# +########################################### + +total_time_start = time.time() + +# first, fetch a 4s segment centered on GW150914 + +gps = 1187008882.43 +trigger_time = gps +fmin = 20 +fmax = 2048 +minimum_frequency = fmin +maximum_frequency = fmax +duration = 128 +post_trigger_duration = 2 +epoch = duration - post_trigger_duration +f_ref = fmin + +ifos = [H1, L1, V1] + + +tukey_alpha = 2 / (duration / 2) +H1.load_data( + gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha +) +L1.load_data( + gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha +) +V1.load_data( + gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha +) + + +waveform = RippleIMRPhenomPv2(f_ref=f_ref) + +########################################### +########## Set up priors ################## +########################################### + +prior = [] + +# Mass prior +M_c_min, M_c_max = 1.18, 1.21 +q_min, q_max = 0.125, 1.0 +Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=["M_c"]) +q_prior = UniformPrior(q_min, q_max, parameter_names=["q"]) + +prior = prior + [Mc_prior, q_prior] + +# Spin prior +s1_prior = UniformSpherePrior(parameter_names=["s1"], max_mag = 0.05) +s2_prior = UniformSpherePrior(parameter_names=["s2"], max_mag = 0.05) +iota_prior = SinePrior(parameter_names=["iota"]) + +prior = prior + [ + s1_prior, + s2_prior, + iota_prior, +] + +# Extrinsic prior +dL_prior = PowerLawPrior(1.0, 75.0, 2.0, parameter_names=["d_L"]) +t_c_prior = UniformPrior(-0.1, 0.1, parameter_names=["t_c"]) +phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) +psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) +ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) +dec_prior = CosinePrior(parameter_names=["dec"]) + +prior = prior + [ + dL_prior, + t_c_prior, + phase_c_prior, + psi_prior, + ra_prior, + dec_prior, +] + +prior = CombinePrior(prior) + +# Defining Transforms + +sample_transforms = [ + DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax), + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]), + GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]), + SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), + BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max), + BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max), + BoundToUnbound(name_mapping = (["s1_phi"], ["s1_phi_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["s2_phi"], ["s2_phi_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s1_theta"], ["s1_theta_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s2_theta"], ["s2_theta_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s1_mag"], ["s1_mag_unbounded"]) , original_lower_bound=0.0, original_upper_bound=0.05), + BoundToUnbound(name_mapping = (["s2_mag"], ["s2_mag_unbounded"]) , original_lower_bound=0.0, original_upper_bound=0.05), + BoundToUnbound(name_mapping = (["phase_det"], ["phase_det_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), +] + +likelihood_transforms = [ + MassRatioToSymmetricMassRatioTransform, + SphereSpinToCartesianSpinTransform("s1"), + SphereSpinToCartesianSpinTransform("s2"), +] + + +#likelihood = TransientLikelihoodFD( +# [H1, L1, V1], waveform=waveform, trigger_time=trigger_time, duration=duration, post_trigger_duration=post_trigger_duration +#) + +likelihood = HeterodynedTransientLikelihoodFD(ifos, waveform=waveform, n_bins = 1000, trigger_time=trigger_time, duration=duration, post_trigger_duration=post_trigger_duration, prior = prior, sample_transforms = sample_transforms, likelihood_transforms = likelihood_transforms, popsize = 10, n_steps = 50) + +mass_matrix = jnp.eye(prior.n_dim) +# mass_matrix = mass_matrix.at[1, 1].set(1e-3) +# mass_matrix = mass_matrix.at[9, 9].set(1e-3) +local_sampler_arg = {"step_size": mass_matrix * 1e-3} + +Adam_optimizer = optimization_Adam(n_steps=3000, learning_rate=0.01, noise_level=1) + +import optax + +n_epochs = 20 +n_loop_training = 100 +total_epochs = n_epochs * n_loop_training +start = total_epochs // 10 +learning_rate = optax.polynomial_schedule( + 1e-3, 1e-4, 4.0, total_epochs - start, transition_begin=start +) + +jim = Jim( + likelihood, + prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_loop_training=n_loop_training, + n_loop_production=20, + n_local_steps=10, + n_global_steps=1000, + n_chains=500, + n_epochs=n_epochs, + learning_rate=learning_rate, + n_max_examples=30000, + n_flow_sample=100000, + momentum=0.9, + batch_size=30000, + use_global=True, + keep_quantile=0.0, + train_thinning=1, + output_thinning=10, + local_sampler_arg=local_sampler_arg, + # strategies=[Adam_optimizer,"default"], +) + + +jim.sample(jax.random.PRNGKey(42)) diff --git a/example/GW170817_PhenomD_NRTv2.py b/example/GW170817_PhenomD_NRTv2.py deleted file mode 100644 index 6d1d6adb..00000000 --- a/example/GW170817_PhenomD_NRTv2.py +++ /dev/null @@ -1,298 +0,0 @@ -import psutil -p = psutil.Process() -p.cpu_affinity([0]) -import os -os.environ["CUDA_VISIBLE_DEVICES"] = "3" -os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.10" -from jimgw.jim import Jim -from jimgw.single_event.detector import H1, L1, V1 -from jimgw.single_event.likelihood import HeterodynedTransientLikelihoodFD -from jimgw.single_event.waveform import RippleIMRPhenomD_NRTidalv2 -from jimgw.prior import Uniform, Composite -import jax.numpy as jnp -import jax -import time -import numpy as np -jax.config.update("jax_enable_x64", True) -import shutil -import numpy as np -import matplotlib.pyplot as plt -import optax -print(f"Devices found by Jax: {jax.devices()}") - -import utils_plotting as utils - -################ -### PREAMBLE ### -################ - -data_path = "/home/thibeau.wouters/gw-datasets/GW170817/" # this is on the CIT cluster # TODO: has to be shared externally! - -start_runtime = time.time() - -############ -### BODY ### -############ - -### Data definitions - -gps = 1187008882.43 -trigger_time = gps -fmin = 20 -fmax = 2048 -minimum_frequency = fmin -maximum_frequency = fmax -duration = 128 -post_trigger_duration = 2 -epoch = duration - post_trigger_duration -f_ref = fmin - -### Getting detector data - -# This is our preprocessed data obtained from the TXT files at the GWOSC website (the GWF gave me NaNs?) -H1.frequencies = jnp.array(np.genfromtxt(f'{data_path}H1_freq.txt')) -H1_data_re, H1_data_im = jnp.array(np.genfromtxt(f'{data_path}H1_data_re.txt')), jnp.array(np.genfromtxt(f'{data_path}H1_data_im.txt')) -H1.data = H1_data_re + 1j * H1_data_im - -L1.frequencies = jnp.array(np.genfromtxt(f'{data_path}L1_freq.txt')) -L1_data_re, L1_data_im = jnp.array(np.genfromtxt(f'{data_path}L1_data_re.txt')), jnp.array(np.genfromtxt(f'{data_path}L1_data_im.txt')) -L1.data = L1_data_re + 1j * L1_data_im - -V1.frequencies = jnp.array(np.genfromtxt(f'{data_path}V1_freq.txt')) -V1_data_re, V1_data_im = jnp.array(np.genfromtxt(f'{data_path}V1_data_re.txt')), jnp.array(np.genfromtxt(f'{data_path}V1_data_im.txt')) -V1.data = V1_data_re + 1j * V1_data_im - -# Load the PSD - -H1.psd = H1.load_psd(H1.frequencies, psd_file = data_path + "GW170817-IMRD_data0_1187008882-43_generation_data_dump.pickle_H1_psd.txt") -L1.psd = L1.load_psd(L1.frequencies, psd_file = data_path + "GW170817-IMRD_data0_1187008882-43_generation_data_dump.pickle_L1_psd.txt") -V1.psd = V1.load_psd(V1.frequencies, psd_file = data_path + "GW170817-IMRD_data0_1187008882-43_generation_data_dump.pickle_V1_psd.txt") - -### Define priors - -# Internal parameters -Mc_prior = Uniform(1.18, 1.21, naming=["M_c"]) -q_prior = Uniform( - 0.125, - 1.0, - naming=["q"], - transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, -) -s1z_prior = Uniform(-0.05, 0.05, naming=["s1_z"]) -s2z_prior = Uniform(-0.05, 0.05, naming=["s2_z"]) -lambda_1_prior = Uniform(0.0, 5000.0, naming=["lambda_1"]) -lambda_2_prior = Uniform(0.0, 5000.0, naming=["lambda_2"]) -dL_prior = Uniform(1.0, 75.0, naming=["d_L"]) -t_c_prior = Uniform(-0.1, 0.1, naming=["t_c"]) -phase_c_prior = Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) -cos_iota_prior = Uniform( - -1.0, - 1.0, - naming=["cos_iota"], - transforms={ - "cos_iota": ( - "iota", - lambda params: jnp.arccos( - jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) -psi_prior = Uniform(0.0, jnp.pi, naming=["psi"]) -ra_prior = Uniform(0.0, 2 * jnp.pi, naming=["ra"]) -sin_dec_prior = Uniform( - -1.0, - 1.0, - naming=["sin_dec"], - transforms={ - "sin_dec": ( - "dec", - lambda params: jnp.arcsin( - jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) - -prior_list = [ - Mc_prior, - q_prior, - s1z_prior, - s2z_prior, - lambda_1_prior, - lambda_2_prior, - dL_prior, - t_c_prior, - phase_c_prior, - cos_iota_prior, - psi_prior, - ra_prior, - sin_dec_prior, - ] - -prior = Composite(prior_list) - -# The following only works if every prior has xmin and xmax property, which is OK for Uniform and Powerlaw -bounds = jnp.array([[p.xmin, p.xmax] for p in prior.priors]) - -### Create likelihood object - -# For simplicity, we put here a set of reference parameters found by the optimizer -ref_params = { - 'M_c': 1.1975896, - 'eta': 0.2461001, - 's1_z': -0.01890608, - 's2_z': 0.04888488, - 'lambda_1': 791.04366468, - 'lambda_2': 891.04366468, - 'd_L': 16.06331818, - 't_c': 0.00193536, - 'phase_c': 5.88649652, - 'iota': 1.93095421, - 'psi': 1.59687217, - 'ra': 3.39736826, - 'dec': -0.34000186 -} - -# Number of bins to use for relative binning -n_bins = 500 - -waveform = RippleIMRPhenomD_NRTidalv2(f_ref=f_ref) -reference_waveform = RippleIMRPhenomD_NRTidalv2(f_ref=f_ref, no_taper=True) - -likelihood = HeterodynedTransientLikelihoodFD([H1, L1, V1], - prior=prior, - bounds=bounds, - waveform=waveform, - trigger_time=gps, - duration=duration, - n_bins=n_bins, - ref_params=ref_params, - reference_waveform=reference_waveform) - -# Local sampler args - -eps = 1e-3 -n_dim = 13 -mass_matrix = jnp.eye(n_dim) -mass_matrix = mass_matrix.at[0,0].set(1e-5) -mass_matrix = mass_matrix.at[1,1].set(1e-4) -mass_matrix = mass_matrix.at[2,2].set(1e-3) -mass_matrix = mass_matrix.at[3,3].set(1e-3) -mass_matrix = mass_matrix.at[7,7].set(1e-5) -mass_matrix = mass_matrix.at[11,11].set(1e-2) -mass_matrix = mass_matrix.at[12,12].set(1e-2) -local_sampler_arg = {"step_size": mass_matrix * eps} - -# Build the learning rate scheduler (if used) - -n_loop_training = 300 -n_epochs = 50 -total_epochs = n_epochs * n_loop_training -start = int(total_epochs / 10) -start_lr = 1e-3 -end_lr = 1e-5 -power = 4.0 -schedule_fn = optax.polynomial_schedule( - start_lr, end_lr, power, total_epochs-start, transition_begin=start) - -scheduler_str = f"polynomial_schedule({start_lr}, {end_lr}, {power}, {total_epochs-start}, {start})" - -## Choose between fixed learning rate - or - the above scheduler here -# learning_rate = schedule_fn -learning_rate = 0.001 - -print(f"Learning rate: {learning_rate}") - -# Create jim object - -outdir_name = "./outdir/" - -jim = Jim( - likelihood, - prior, - n_loop_training=n_loop_training, - n_loop_production=20, - n_local_steps=100, - n_global_steps=1000, - n_chains=1000, - n_epochs=n_epochs, - learning_rate=schedule_fn, - max_samples=50000, - momentum=0.9, - batch_size=50000, - use_global=True, - keep_quantile=0.0, - train_thinning=10, - output_thinning=30, - local_sampler_arg=local_sampler_arg, - outdir_name=outdir_name -) - -### Heavy computation begins -jim.sample(jax.random.PRNGKey(41)) -### Heavy computation ends - -# === Show results, save output === - -# Print a summary to screen: -jim.print_summary() -outdir = outdir_name - -# Save and plot the results of the run -# - training phase - -name = outdir + f'results_training.npz' -print(f"Saving samples to {name}") -state = jim.Sampler.get_sampler_state(training=True) -chains, log_prob, local_accs, global_accs, loss_vals = state["chains"], state[ - "log_prob"], state["local_accs"], state["global_accs"], state["loss_vals"] -local_accs = jnp.mean(local_accs, axis=0) -global_accs = jnp.mean(global_accs, axis=0) -np.savez(name, log_prob=log_prob, local_accs=local_accs, - global_accs=global_accs, loss_vals=loss_vals) - -utils.plot_accs(local_accs, "Local accs (training)", - "local_accs_training", outdir) -utils.plot_accs(global_accs, "Global accs (training)", - "global_accs_training", outdir) -utils.plot_loss_vals(loss_vals, "Loss", "loss_vals", outdir) -utils.plot_log_prob(log_prob, "Log probability (training)", - "log_prob_training", outdir) - -# - production phase -name = outdir + f'results_production.npz' -state = jim.Sampler.get_sampler_state(training=False) -chains, log_prob, local_accs, global_accs = state["chains"], state[ - "log_prob"], state["local_accs"], state["global_accs"] -local_accs = jnp.mean(local_accs, axis=0) -global_accs = jnp.mean(global_accs, axis=0) -np.savez(name, chains=chains, log_prob=log_prob, - local_accs=local_accs, global_accs=global_accs) - -utils.plot_accs(local_accs, "Local accs (production)", - "local_accs_production", outdir) -utils.plot_accs(global_accs, "Global accs (production)", - "global_accs_production", outdir) -utils.plot_log_prob(log_prob, "Log probability (production)", - "log_prob_production", outdir) - -# Plot the chains as corner plots -utils.plot_chains(chains, "chains_production", outdir, truths=None) - -# Save the NF and show a plot of samples from the flow -print("Saving the NF") -jim.Sampler.save_flow(outdir + "nf_model") - -# Final steps - - -print("Finished successfully") - -end_runtime = time.time() -runtime = end_runtime - start_runtime -print(f"Time taken: {runtime} seconds ({(runtime)/60} minutes)") - -print(f"Saving runtime") -with open(outdir + 'runtime.txt', 'w') as file: - file.write(str(runtime)) \ No newline at end of file diff --git a/example/GW170817_TaylorF2.py b/example/GW170817_TaylorF2.py deleted file mode 100644 index 499f2d6d..00000000 --- a/example/GW170817_TaylorF2.py +++ /dev/null @@ -1,294 +0,0 @@ -import psutil -p = psutil.Process() -p.cpu_affinity([0]) -import os -os.environ["CUDA_VISIBLE_DEVICES"] = "2" -os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.10" -from jimgw.jim import Jim -from jimgw.single_event.detector import H1, L1, V1 -from jimgw.single_event.likelihood import HeterodynedTransientLikelihoodFD -from jimgw.single_event.waveform import RippleTaylorF2 -from jimgw.prior import Uniform, Composite -import jax.numpy as jnp -import jax -import time -import numpy as np -jax.config.update("jax_enable_x64", True) -import shutil -import numpy as np -import matplotlib.pyplot as plt -import optax -print(f"Devices found by Jax: {jax.devices()}") - -import utils_plotting as utils - -################ -### PREAMBLE ### -################ - -data_path = "/home/thibeau.wouters/gw-datasets/GW170817/" # this is on the CIT cluster # TODO: has to be shared externally! - -start_runtime = time.time() - -############ -### BODY ### -############ - -### Data definitions - -gps = 1187008882.43 -trigger_time = gps -fmin = 20 -fmax = 2048 -minimum_frequency = fmin -maximum_frequency = fmax -duration = 128 -post_trigger_duration = 2 -epoch = duration - post_trigger_duration -f_ref = fmin - -### Getting detector data - -# This is our preprocessed data obtained from the TXT files at the GWOSC website (the GWF gave me NaNs?) -H1.frequencies = jnp.array(np.genfromtxt(f'{data_path}H1_freq.txt')) -H1_data_re, H1_data_im = jnp.array(np.genfromtxt(f'{data_path}H1_data_re.txt')), jnp.array(np.genfromtxt(f'{data_path}H1_data_im.txt')) -H1.data = H1_data_re + 1j * H1_data_im - -L1.frequencies = jnp.array(np.genfromtxt(f'{data_path}L1_freq.txt')) -L1_data_re, L1_data_im = jnp.array(np.genfromtxt(f'{data_path}L1_data_re.txt')), jnp.array(np.genfromtxt(f'{data_path}L1_data_im.txt')) -L1.data = L1_data_re + 1j * L1_data_im - -V1.frequencies = jnp.array(np.genfromtxt(f'{data_path}V1_freq.txt')) -V1_data_re, V1_data_im = jnp.array(np.genfromtxt(f'{data_path}V1_data_re.txt')), jnp.array(np.genfromtxt(f'{data_path}V1_data_im.txt')) -V1.data = V1_data_re + 1j * V1_data_im - -# Load the PSD - -H1.psd = H1.load_psd(H1.frequencies, psd_file = data_path + "GW170817-IMRD_data0_1187008882-43_generation_data_dump.pickle_H1_psd.txt") -L1.psd = L1.load_psd(L1.frequencies, psd_file = data_path + "GW170817-IMRD_data0_1187008882-43_generation_data_dump.pickle_L1_psd.txt") -V1.psd = V1.load_psd(V1.frequencies, psd_file = data_path + "GW170817-IMRD_data0_1187008882-43_generation_data_dump.pickle_V1_psd.txt") - -### Define priors - -# Internal parameters -Mc_prior = Uniform(1.18, 1.21, naming=["M_c"]) -q_prior = Uniform( - 0.125, - 1.0, - naming=["q"], - transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, -) -s1z_prior = Uniform(-0.05, 0.05, naming=["s1_z"]) -s2z_prior = Uniform(-0.05, 0.05, naming=["s2_z"]) -lambda_1_prior = Uniform(0.0, 5000.0, naming=["lambda_1"]) -lambda_2_prior = Uniform(0.0, 5000.0, naming=["lambda_2"]) -dL_prior = Uniform(1.0, 75.0, naming=["d_L"]) -t_c_prior = Uniform(-0.1, 0.1, naming=["t_c"]) -phase_c_prior = Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) -cos_iota_prior = Uniform( - -1.0, - 1.0, - naming=["cos_iota"], - transforms={ - "cos_iota": ( - "iota", - lambda params: jnp.arccos( - jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) -psi_prior = Uniform(0.0, jnp.pi, naming=["psi"]) -ra_prior = Uniform(0.0, 2 * jnp.pi, naming=["ra"]) -sin_dec_prior = Uniform( - -1.0, - 1.0, - naming=["sin_dec"], - transforms={ - "sin_dec": ( - "dec", - lambda params: jnp.arcsin( - jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) - -prior_list = [ - Mc_prior, - q_prior, - s1z_prior, - s2z_prior, - lambda_1_prior, - lambda_2_prior, - dL_prior, - t_c_prior, - phase_c_prior, - cos_iota_prior, - psi_prior, - ra_prior, - sin_dec_prior, - ] - -prior = Composite(prior_list) - -# The following only works if every prior has xmin and xmax property, which is OK for Uniform and Powerlaw -bounds = jnp.array([[p.xmin, p.xmax] for p in prior.priors]) - -### Create likelihood object - -# For simplicity, we put here a set of reference parameters found by the optimizer -ref_params = { - 'M_c': 1.19793583, - 'eta': 0.24794374, - 's1_z': 0.00220637, - 's2_z': 0.05, - 'lambda_1': 105.12916663, - 'lambda_2': 0.0, - 'd_L': 45.41592353, - 't_c': 0.00220588, - 'phase_c': 5.76822606, - 'iota': 2.46158044, - 'psi': 2.09118099, - 'ra': 5.03335133, - 'dec': 0.01679998 -} - -# Number of bins to use for relative binning -n_bins = 500 - -waveform = RippleTaylorF2(f_ref=f_ref) -likelihood = HeterodynedTransientLikelihoodFD([H1, L1, V1], - prior=prior, - bounds=bounds, - waveform=waveform, - trigger_time=gps, - duration=duration, - n_bins=n_bins, - ref_params=ref_params) - -# Local sampler args - -eps = 1e-3 -n_dim = 13 -mass_matrix = jnp.eye(n_dim) -mass_matrix = mass_matrix.at[0,0].set(1e-5) -mass_matrix = mass_matrix.at[1,1].set(1e-4) -mass_matrix = mass_matrix.at[2,2].set(1e-3) -mass_matrix = mass_matrix.at[3,3].set(1e-3) -mass_matrix = mass_matrix.at[7,7].set(1e-5) -mass_matrix = mass_matrix.at[11,11].set(1e-2) -mass_matrix = mass_matrix.at[12,12].set(1e-2) -local_sampler_arg = {"step_size": mass_matrix * eps} - -# Build the learning rate scheduler (if used) - -n_loop_training = 300 -n_epochs = 50 -total_epochs = n_epochs * n_loop_training -start = int(total_epochs / 10) -start_lr = 1e-3 -end_lr = 1e-5 -power = 4.0 -schedule_fn = optax.polynomial_schedule( - start_lr, end_lr, power, total_epochs-start, transition_begin=start) - -scheduler_str = f"polynomial_schedule({start_lr}, {end_lr}, {power}, {total_epochs-start}, {start})" - -## Choose between fixed learning rate - or - the above scheduler here -# learning_rate = schedule_fn -learning_rate = 0.001 - -print(f"Learning rate: {learning_rate}") - -# Create jim object - -outdir_name = "./outdir_TF2/" -jim = Jim( - likelihood, - prior, - n_loop_training=n_loop_training, - n_loop_production=20, - n_local_steps=100, - n_global_steps=1000, - n_chains=1000, - n_epochs=n_epochs, - learning_rate=schedule_fn, - max_samples=50000, - momentum=0.9, - batch_size=50000, - use_global=True, - keep_quantile=0.0, - train_thinning=10, - output_thinning=30, - local_sampler_arg=local_sampler_arg, - outdir_name=outdir_name -) - -### Heavy computation begins -jim.sample(jax.random.PRNGKey(43)) -### Heavy computation ends - -# === Show results, save output === - -# Print a summary to screen: -jim.print_summary() -outdir = outdir_name - -# Save and plot the results of the run -# - training phase - -name = outdir + f'results_training.npz' -print(f"Saving samples to {name}") -state = jim.Sampler.get_sampler_state(training=True) -chains, log_prob, local_accs, global_accs, loss_vals = state["chains"], state[ - "log_prob"], state["local_accs"], state["global_accs"], state["loss_vals"] -local_accs = jnp.mean(local_accs, axis=0) -global_accs = jnp.mean(global_accs, axis=0) -np.savez(name, log_prob=log_prob, local_accs=local_accs, - global_accs=global_accs, loss_vals=loss_vals) - -utils.plot_accs(local_accs, "Local accs (training)", - "local_accs_training", outdir) -utils.plot_accs(global_accs, "Global accs (training)", - "global_accs_training", outdir) -utils.plot_loss_vals(loss_vals, "Loss", "loss_vals", outdir) -utils.plot_log_prob(log_prob, "Log probability (training)", - "log_prob_training", outdir) - -# - production phase -name = outdir + f'results_production.npz' -state = jim.Sampler.get_sampler_state(training=False) -chains, log_prob, local_accs, global_accs = state["chains"], state[ - "log_prob"], state["local_accs"], state["global_accs"] -local_accs = jnp.mean(local_accs, axis=0) -global_accs = jnp.mean(global_accs, axis=0) -np.savez(name, chains=chains, log_prob=log_prob, - local_accs=local_accs, global_accs=global_accs) - -utils.plot_accs(local_accs, "Local accs (production)", - "local_accs_production", outdir) -utils.plot_accs(global_accs, "Global accs (production)", - "global_accs_production", outdir) -utils.plot_log_prob(log_prob, "Log probability (production)", - "log_prob_production", outdir) - -# Plot the chains as corner plots -utils.plot_chains(chains, "chains_production", outdir, truths=None) - -# Save the NF and show a plot of samples from the flow -print("Saving the NF") -jim.Sampler.save_flow(outdir + "nf_model") - -# Final steps - - -print("Finished successfully") - -end_runtime = time.time() -runtime = end_runtime - start_runtime -print(f"Time taken: {runtime} seconds ({(runtime)/60} minutes)") - -print(f"Saving runtime") -with open(outdir + 'runtime.txt', 'w') as file: - file.write(str(runtime)) \ No newline at end of file diff --git a/example/GW170817_heterodyne.py b/example/GW170817_heterodyne.py deleted file mode 100644 index 37aaeec1..00000000 --- a/example/GW170817_heterodyne.py +++ /dev/null @@ -1,157 +0,0 @@ -import time - -import jax -import jax.numpy as jnp - -from jimgw.jim import Jim -from jimgw.prior import Composite, PowerLaw, Uniform -from jimgw.single_event.detector import H1, L1, V1 -from jimgw.single_event.likelihood import HeterodynedTransientLikelihoodFD -from jimgw.single_event.waveform import RippleIMRPhenomD - -jax.config.update("jax_enable_x64", True) - - -### Fetching the data - -total_time_start = time.time() -gps = 1187008882.43 -trigger_time = gps -fmin = 20 -fmax = 2048 -minimum_frequency = fmin -maximum_frequency = fmax -T = 128 -duration = T -post_trigger_duration = 2 -epoch = duration - post_trigger_duration -f_ref = fmin - -### Getting ifos and overwriting with above data - -tukey_alpha = 2 / (duration / 2) -H1.load_data( - gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha -) -L1.load_data( - gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha -) -V1.load_data( - gps, duration, 2, fmin, fmax, psd_pad=duration + 16, tukey_alpha=tukey_alpha -) - -### Define priors - -# Internal parameters -Mc_prior = Uniform(1.18, 1.21, naming=["M_c"]) -q_prior = Uniform( - 0.125, - 1.0, - naming=["q"], - transforms={"q": ("eta", lambda params: params["q"] / (1 + params["q"]) ** 2)}, -) -s1z_prior = Uniform(-0.05, 0.05, naming=["s1_z"]) -s2z_prior = Uniform(-0.05, 0.05, naming=["s2_z"]) - -# External parameters -dL_prior = PowerLaw(1.0, 75.0, 2.0, naming=["d_L"]) -t_c_prior = Uniform(-0.1, 0.1, naming=["t_c"]) -phase_c_prior = Uniform(0.0, 2 * jnp.pi, naming=["phase_c"]) -cos_iota_prior = Uniform( - -1.0, - 1.0, - naming=["cos_iota"], - transforms={ - "cos_iota": ( - "iota", - lambda params: jnp.arccos( - jnp.arcsin(jnp.sin(params["cos_iota"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) -psi_prior = Uniform(0.0, jnp.pi, naming=["psi"]) -ra_prior = Uniform(0.0, 2 * jnp.pi, naming=["ra"]) -sin_dec_prior = Uniform( - -1.0, - 1.0, - naming=["sin_dec"], - transforms={ - "sin_dec": ( - "dec", - lambda params: jnp.arcsin( - jnp.arcsin(jnp.sin(params["sin_dec"] / 2 * jnp.pi)) * 2 / jnp.pi - ), - ) - }, -) - -prior = Composite( - [ - Mc_prior, - q_prior, - s1z_prior, - s2z_prior, - dL_prior, - t_c_prior, - phase_c_prior, - cos_iota_prior, - psi_prior, - ra_prior, - sin_dec_prior, - ] -) - -# The following only works if every prior has xmin and xmax property, which is OK for Uniform and Powerlaw -bounds = jnp.array([[p.xmin, p.xmax] for p in prior.priors]) - -### Create likelihood object -likelihood = HeterodynedTransientLikelihoodFD( - [H1, L1, V1], - prior=prior, - bounds=bounds, - waveform=RippleIMRPhenomD(), - trigger_time=gps, - duration=T, - n_bins=500, -) - -### Create sampler and jim objects -eps = 3e-2 -n_dim = 11 -mass_matrix = jnp.eye(n_dim) -mass_matrix = mass_matrix.at[0, 0].set(1e-5) -mass_matrix = mass_matrix.at[1, 1].set(1e-4) -mass_matrix = mass_matrix.at[2, 2].set(1e-3) -mass_matrix = mass_matrix.at[3, 3].set(1e-3) -mass_matrix = mass_matrix.at[5, 5].set(1e-5) -mass_matrix = mass_matrix.at[9, 9].set(1e-2) -mass_matrix = mass_matrix.at[10, 10].set(1e-2) -local_sampler_arg = {"step_size": mass_matrix * eps} - -outdir_name = "./outdir/" - -jim = Jim( - likelihood, - prior, - n_loop_training=200, - n_loop_production=20, - n_local_steps=200, - n_global_steps=200, - n_chains=1000, - n_epochs=300, - learning_rate=0.001, - n_max_examples=50000, - momentum=0.9, - batch_size=50000, - use_global=True, - keep_quantile=0.0, - train_thinning=10, - output_thinning=30, - n_loops_maximize_likelihood=2000, - local_sampler_arg=local_sampler_arg, - outdir_name=outdir_name, -) - -jim.sample(jax.random.PRNGKey(42)) -jim.print_summary() diff --git a/example/Single_event_runManager.py b/example/Single_event_runManager.py deleted file mode 100644 index c0878afc..00000000 --- a/example/Single_event_runManager.py +++ /dev/null @@ -1,93 +0,0 @@ - -import jax -import jax.numpy as jnp - -from jimgw.single_event.runManager import (SingleEventPERunManager, - SingleEventRun) - -jax.config.update("jax_enable_x64", True) - -mass_matrix = jnp.eye(11) -mass_matrix = mass_matrix.at[1, 1].set(1e-3) -mass_matrix = mass_matrix.at[5, 5].set(1e-3) -mass_matrix = mass_matrix * 3e-3 -local_sampler_arg = {"step_size": mass_matrix} -bounds = jnp.array( - [ - [10.0, 40.0], - [0.125, 1.0], - [-1.0, 1.0], - [-1.0, 1.0], - [0.0, 2000.0], - [-0.05, 0.05], - [0.0, 2 * jnp.pi], - [-1.0, 1.0], - [0.0, jnp.pi], - [0.0, 2 * jnp.pi], - [-1.0, 1.0], - ] -) - - -run = SingleEventRun( - seed=0, - path="test_data/GW150914/", - detectors=["H1", "L1"], - priors={ - "M_c": {"name": "Uniform", "xmin": 10.0, "xmax": 80.0}, - "q": {"name": "MassRatio"}, - "s1_z": {"name": "Uniform", "xmin": -1.0, "xmax": 1.0}, - "s2_z": {"name": "Uniform", "xmin": -1.0, "xmax": 1.0}, - "d_L": {"name": "Uniform", "xmin": 0.0, "xmax": 2000.0}, - "t_c": {"name": "Uniform", "xmin": -0.05, "xmax": 0.05}, - "phase_c": {"name": "Uniform", "xmin": 0.0, "xmax": 2 * jnp.pi}, - "cos_iota": {"name": "CosIota"}, - "psi": {"name": "Uniform", "xmin": 0.0, "xmax": jnp.pi}, - "ra": {"name": "Uniform", "xmin": 0.0, "xmax": 2 * jnp.pi}, - "sin_dec": {"name": "SinDec"}, - }, - waveform_parameters={"name": "RippleIMRPhenomD", "f_ref": 20.0}, - jim_parameters={ - "n_loop_training": 10, - "n_loop_production": 10, - "n_local_steps": 150, - "n_global_steps": 150, - "n_chains": 500, - "n_epochs": 50, - "learning_rate": 0.001, - "n_max_examples": 45000, - "momentum": 0.9, - "batch_size": 50000, - "use_global": True, - "keep_quantile": 0.0, - "train_thinning": 1, - "output_thinning": 10, - "local_sampler_arg": local_sampler_arg, - }, - likelihood_parameters={"name": "HeterodynedTransientLikelihoodFD", "bounds": bounds}, - injection=True, - injection_parameters={ - "M_c": 28.6, - "eta": 0.24, - "s1_z": 0.05, - "s2_z": 0.05, - "d_L": 440.0, - "t_c": 0.0, - "phase_c": 0.0, - "iota": 0.5, - "psi": 0.7, - "ra": 1.2, - "dec": 0.3, - }, - data_parameters={ - "trigger_time": 1126259462.4, - "duration": 4, - "post_trigger_duration": 2, - "f_min": 20.0, - "f_max": 1024.0, - "tukey_alpha": 0.2, - "f_sampling": 4096.0, - }, -) - -run_manager = SingleEventPERunManager(run=run) diff --git a/example/gen_injection_config.py b/example/gen_injection_config.py deleted file mode 100644 index 1c200a58..00000000 --- a/example/gen_injection_config.py +++ /dev/null @@ -1,73 +0,0 @@ -import numpy as np - - -def Mc_eta_to_ms(m): - Mchirp, eta = m - M = Mchirp / (eta ** (3 / 5)) - m2 = (M - np.sqrt(M ** 2 - 4 * M ** 2 * eta)) / 2 - m1 = M - m2 - return m1, m2 - -prior_range = np.array([[10,50],[0.5,1],[-0.5,0.5],[-0.5,0.5],[300,2000],[-0.5,0.5],[0,2*np.pi],[-1,1],[0,np.pi],[0,2*np.pi],[-1,1]]) - -N_config = 3000 - -mc = np.random.uniform(prior_range[0,0],prior_range[0,1],N_config) -q = np.random.uniform(prior_range[1,0],prior_range[1,1],N_config) -eta = q/(1+q)**2 -m1,m2 = Mc_eta_to_ms(np.stack([mc,eta])) -chi1 = np.random.uniform(prior_range[2,0],prior_range[2,1],N_config) -chi2 = np.random.uniform(prior_range[3,0],prior_range[3,1],N_config) -dist_mpc = np.random.uniform(prior_range[4,0],prior_range[4,1],N_config) -tc = np.random.uniform(prior_range[5,0],prior_range[5,1],N_config) -phic = np.random.uniform(prior_range[6,0],prior_range[6,1],N_config) -cos_inclination = np.random.uniform(prior_range[7,0],prior_range[7,1],N_config) -inclination = np.arccos(cos_inclination) -polarization_angle = np.random.uniform(prior_range[8,0],prior_range[8,1],N_config) -ra = np.random.uniform(prior_range[9,0],prior_range[9,1],N_config) -sin_dec = np.random.uniform(prior_range[10,0],prior_range[10,1],N_config) -#dec = np.arcsin(sin_dec) - -directory = '/mnt/home/wwong/ceph/GWProject/JaxGW/RealtimePE/ppPlots/configs/' - -for i in range(N_config): - f = open(directory+"injection_config_"+str(i)+".yaml","w") - - f.write('output_path: /mnt/home/wwong/ceph/GWProject/JaxGW/RealtimePE/ppPlots/injection_'+str(i)+'\n') - f.write('downsample_factor: 10\n') - f.write('seed: '+str(np.random.randint(low=0,high=10000))+'\n') - f.write('f_sampling: 2048\n') - f.write('duration: 16\n') - f.write('fmin: 30\n') - f.write('ifos:\n') - f.write(' - H1\n') - f.write(' - L1\n') - f.write(' - V1\n') - - f.write("m1: "+str(m1[i])+"\n") - f.write("m2: "+str(m2[i])+"\n") - f.write("chi1: "+str(chi1[i])+"\n") - f.write("chi2: "+str(chi2[i])+"\n") - f.write("dist_mpc: "+str(dist_mpc[i])+"\n") - f.write("tc: "+str(tc[i])+"\n") - f.write("phic: "+str(phic[i])+"\n") - f.write("inclination: "+str(inclination[i])+"\n") - f.write("polarization_angle: "+str(polarization_angle[i])+"\n") - f.write("ra: "+str(ra[i])+"\n") - f.write("dec: "+str(dec[i])+"\n") - f.write("heterodyne_bins: 1001\n") - - f.write("n_dim: 11\n") - f.write("n_chains: 1000\n") - f.write("n_loop_training: 20\n") - f.write("n_loop_production: 20\n") - f.write("n_local_steps: 200\n") - f.write("n_global_steps: 200\n") - f.write("learning_rate: 0.001\n") - f.write("max_samples: 50000\n") - f.write("momentum: 0.9\n") - f.write("num_epochs: 240\n") - f.write("batch_size: 50000\n") - f.write("stepsize: 0.01\n") - - f.close() diff --git a/example/make_ppPlot.py b/example/make_ppPlot.py deleted file mode 100644 index 3a8c1ad1..00000000 --- a/example/make_ppPlot.py +++ /dev/null @@ -1,68 +0,0 @@ -import arviz as az -import numpy as np -from scipy.interpolate import interp1d -from scipy.optimize import minimize_scalar - -q_axis = np.linspace(0.1,1,100) -eta = q_axis/(1+q_axis)**2 -q_interp = interp1d(eta,q_axis) - -def get_all_quantile(filename): - data = np.load(filename) - - chains = data['chains'] - true_param = data['true_param'] - true_param[1] = q_interp(true_param[1]) - true_param[7] = np.cos(true_param[7]) - true_param[10] = np.sin(true_param[10]) - - def compute_percentile(value,data): - return np.where(data=6.1.4", + "beartype>=0.19.0", + "corner>=2.2.2", + "flowmc>=0.3.4", + "gwpy>=3.0.10", + "jax>=0.4.34", + "jaxtyping>=0.2.34", + "pytest>=8.3.3", + "ripplegw>=0.0.9", + "typed-argument-parser>=1.10.1", +] + +[project.optional-dependencies] +docs = [ + "mkdocs-gen-files", + "mkdocs-jupyter", + "mkdocs-literate-nav", + "mkdocs-material", + "mkdocs", + "mkdocstrings[python]", + "pymdown-extensions", +] + +[tool.uv] +dev-dependencies = [ + "jimgw", +] -[tool.pyright] -reportIncompatibleMethodOverride = "warning" \ No newline at end of file +[tool.uv.sources] +jimgw = { workspace = true } + + +[build-system] +requires = ["hatchling"] +build-backend = "hatchling.build" diff --git a/setup.cfg b/setup.cfg deleted file mode 100644 index e2fbd986..00000000 --- a/setup.cfg +++ /dev/null @@ -1,31 +0,0 @@ -[metadata] -name = jimGW -version = 0.1.1 -author = Kaze Wong -author_email = kazewong.physics@gmail.com -url = https://github.com/kazewong/jim -description = Gravitatioanl wave data analysis tool in Jax -long_description = file: README.md -long_description_content_type = text/markdown -keywords = sampling, inference, machine learning, normalizing, autodiff, jax -license = MIT - -[options] -packages_dir= - =src -packages = find: -install_requires = - jax>=0.4.12 - jaxlib>=0.4.12 - flowMC>=0.3.4 - ripplegw - gwpy - corner - astropy - typed-argument-parser - jaxtyping>=0.2.31 - beartype -python_requires = >=3.9 - -[options.packages.find] -where=src diff --git a/src/jimgw/jim.py b/src/jimgw/jim.py index 0ab1105a..805e9268 100644 --- a/src/jimgw/jim.py +++ b/src/jimgw/jim.py @@ -3,22 +3,55 @@ from flowMC.nfmodel.rqSpline import MaskedCouplingRQSpline from flowMC.proposal.MALA import MALA from flowMC.Sampler import Sampler -from flowMC.utils.EvolutionaryOptimizer import EvolutionaryOptimizer from jaxtyping import Array, Float, PRNGKeyArray from jimgw.base import LikelihoodBase from jimgw.prior import Prior +from jimgw.transforms import BijectiveTransform, NtoMTransform class Jim(object): """ Master class for interfacing with flowMC - """ - def __init__(self, likelihood: LikelihoodBase, prior: Prior, **kwargs): - self.Likelihood = likelihood - self.Prior = prior + likelihood: LikelihoodBase + prior: Prior + + # Name of parameters to sample from + sample_transforms: list[BijectiveTransform] + likelihood_transforms: list[NtoMTransform] + parameter_names: list[str] + sampler: Sampler + + def __init__( + self, + likelihood: LikelihoodBase, + prior: Prior, + sample_transforms: list[BijectiveTransform] = [], + likelihood_transforms: list[NtoMTransform] = [], + **kwargs, + ): + self.likelihood = likelihood + self.prior = prior + + self.sample_transforms = sample_transforms + self.likelihood_transforms = likelihood_transforms + self.parameter_names = prior.parameter_names + + if len(sample_transforms) == 0: + print( + "No sample transforms provided. Using prior parameters as sampling parameters" + ) + else: + print("Using sample transforms") + for transform in sample_transforms: + self.parameter_names = transform.propagate_name(self.parameter_names) + + if len(likelihood_transforms) == 0: + print( + "No likelihood transforms provided. Using prior parameters as likelihood parameters" + ) seed = kwargs.get("seed", 0) @@ -33,11 +66,11 @@ def __init__(self, likelihood: LikelihoodBase, prior: Prior, **kwargs): rng_key, subkey = jax.random.split(rng_key) model = MaskedCouplingRQSpline( - self.Prior.n_dim, num_layers, hidden_size, num_bins, subkey + self.prior.n_dim, num_layers, hidden_size, num_bins, subkey ) - self.Sampler = Sampler( - self.Prior.n_dim, + self.sampler = Sampler( + self.prior.n_dim, rng_key, None, # type: ignore local_sampler, @@ -45,43 +78,64 @@ def __init__(self, likelihood: LikelihoodBase, prior: Prior, **kwargs): **kwargs, ) - def posterior(self, params: Float[Array, " n_dim"], data: dict): - prior_params = self.Prior.add_name(params.T) - prior = self.Prior.log_prob(prior_params) - return ( - self.Likelihood.evaluate(self.Prior.transform(prior_params), data) + prior - ) - - def sample(self, key: PRNGKeyArray, initial_guess: Array = jnp.array([])): - if initial_guess.size == 0: - initial_guess_named = self.Prior.sample(key, self.Sampler.n_chains) - initial_guess = jnp.stack([i for i in initial_guess_named.values()]).T - self.Sampler.sample(initial_guess, None) # type: ignore - - def maximize_likelihood( - self, - bounds: Float[Array, " n_dim 2"], - set_nwalkers: int = 100, - n_loops: int = 2000, - seed=92348, - ): - key = jax.random.PRNGKey(seed) - set_nwalkers = set_nwalkers - initial_guess = self.Prior.sample(key, set_nwalkers) + def add_name(self, x: Float[Array, " n_dim"]) -> dict[str, Float]: + """ + Turn an array into a dictionary - def negative_posterior(x: Float[Array, " n_dim"]): - return -self.posterior(x, None) # type: ignore since flowMC does not have typing info, yet + Parameters + ---------- + x : Array + An array of parameters. Shape (n_dim,). + """ - negative_posterior = jax.jit(jax.vmap(negative_posterior)) - print("Compiling likelihood function") - negative_posterior(initial_guess) - print("Done compiling") + return dict(zip(self.parameter_names, x)) - print("Starting the optimizer") - optimizer = EvolutionaryOptimizer(self.Prior.n_dim, verbose=True) - _ = optimizer.optimize(negative_posterior, bounds, n_loops=n_loops) - best_fit = optimizer.get_result()[0] - return best_fit + def posterior(self, params: Float[Array, " n_dim"], data: dict): + named_params = self.add_name(params) + transform_jacobian = 0.0 + for transform in reversed(self.sample_transforms): + named_params, jacobian = transform.inverse(named_params) + transform_jacobian += jacobian + prior = self.prior.log_prob(named_params) + transform_jacobian + for transform in self.likelihood_transforms: + named_params = transform.forward(named_params) + return self.likelihood.evaluate(named_params, data) + prior + + def sample(self, key: PRNGKeyArray, initial_position: Array = jnp.array([])): + if initial_position.size == 0: + initial_position = ( + jnp.zeros((self.sampler.n_chains, self.prior.n_dim)) + jnp.nan + ) + + while not jax.tree.reduce( + jnp.logical_and, + jax.tree.map(lambda x: jnp.isfinite(x), initial_position), + ).all(): + non_finite_index = jnp.where( + jnp.any( + ~jax.tree.reduce( + jnp.logical_and, + jax.tree.map(lambda x: jnp.isfinite(x), initial_position), + ), + axis=1, + ) + )[0] + + key, subkey = jax.random.split(key) + guess = self.prior.sample(subkey, self.sampler.n_chains) + for transform in self.sample_transforms: + guess = jax.vmap(transform.forward)(guess) + guess = jnp.array( + jax.tree.leaves({key: guess[key] for key in self.parameter_names}) + ).T + finite_guess = jnp.where( + jnp.all(jax.tree.map(lambda x: jnp.isfinite(x), guess), axis=1) + )[0] + common_length = min(len(finite_guess), len(non_finite_index)) + initial_position = initial_position.at[ + non_finite_index[:common_length] + ].set(guess[:common_length]) + self.sampler.sample(initial_position, None) # type: ignore def print_summary(self, transform: bool = True): """ @@ -89,22 +143,24 @@ def print_summary(self, transform: bool = True): """ - train_summary = self.Sampler.get_sampler_state(training=True) - production_summary = self.Sampler.get_sampler_state(training=False) + train_summary = self.sampler.get_sampler_state(training=True) + production_summary = self.sampler.get_sampler_state(training=False) - training_chain = train_summary["chains"].reshape(-1, self.Prior.n_dim).T - training_chain = self.Prior.add_name(training_chain) + training_chain = train_summary["chains"].reshape(-1, self.prior.n_dim).T + training_chain = self.add_name(training_chain) if transform: - training_chain = self.Prior.transform(training_chain) + for sample_transform in reversed(self.sample_transforms): + training_chain = jax.vmap(sample_transform.backward)(training_chain) training_log_prob = train_summary["log_prob"] training_local_acceptance = train_summary["local_accs"] training_global_acceptance = train_summary["global_accs"] training_loss = train_summary["loss_vals"] - production_chain = production_summary["chains"].reshape(-1, self.Prior.n_dim).T - production_chain = self.Prior.add_name(production_chain) + production_chain = production_summary["chains"].reshape(-1, self.prior.n_dim).T + production_chain = self.add_name(production_chain) if transform: - production_chain = self.Prior.transform(production_chain) + for sample_transform in reversed(self.sample_transforms): + production_chain = jax.vmap(sample_transform.backward)(production_chain) production_log_prob = production_summary["log_prob"] production_local_acceptance = production_summary["local_accs"] production_global_acceptance = production_summary["global_accs"] @@ -156,11 +212,14 @@ def get_samples(self, training: bool = False) -> dict: """ if training: - chains = self.Sampler.get_sampler_state(training=True)["chains"] + chains = self.sampler.get_sampler_state(training=True)["chains"] else: - chains = self.Sampler.get_sampler_state(training=False)["chains"] + chains = self.sampler.get_sampler_state(training=False)["chains"] - chains = self.Prior.transform(self.Prior.add_name(chains.transpose(2, 0, 1))) + chains = chains.reshape(-1, self.prior.n_dim) + chains = jax.vmap(self.add_name)(chains) + for sample_transform in reversed(self.sample_transforms): + chains = jax.vmap(sample_transform.backward)(chains) return chains def plot(self): diff --git a/src/jimgw/prior.py b/src/jimgw/prior.py index f1827753..87406ca8 100644 --- a/src/jimgw/prior.py +++ b/src/jimgw/prior.py @@ -1,14 +1,20 @@ from dataclasses import field -from typing import Callable, Union import jax import jax.numpy as jnp -from flowMC.nfmodel.base import Distribution -from jaxtyping import Array, Float, Int, PRNGKeyArray, jaxtyped from beartype import beartype as typechecker -from jimgw.single_event.utils import zenith_azimuth_to_ra_dec -from jimgw.single_event.detector import GroundBased2G, detector_preset -from astropy.time import Time +from flowMC.nfmodel.base import Distribution +from jaxtyping import Array, Float, PRNGKeyArray, jaxtyped + +from jimgw.transforms import ( + BijectiveTransform, + LogitTransform, + ScaleTransform, + OffsetTransform, + ArcSineTransform, + PowerLawTransform, + ParetoTransform, +) class Prior(Distribution): @@ -21,58 +27,21 @@ class Prior(Distribution): the names of the parameters and the transforms that are applied to them. """ - naming: list[str] - transforms: dict[str, tuple[str, Callable]] = field(default_factory=dict) + parameter_names: list[str] + composite: bool = False @property - def n_dim(self): - return len(self.naming) + def n_dim(self) -> int: + return len(self.parameter_names) - def __init__( - self, naming: list[str], transforms: dict[str, tuple[str, Callable]] = {} - ): + def __init__(self, parameter_names: list[str]): """ Parameters ---------- - naming : list[str] + parameter_names : list[str] A list of names for the parameters of the prior. - transforms : dict[tuple[str,Callable]] - A dictionary of transforms to apply to the parameters. The keys are - the names of the parameters and the values are a tuple of the name - of the transform and the transform itself. """ - self.naming = naming - self.transforms = {} - - def make_lambda(name): - return lambda x: x[name] - - for name in naming: - if name in transforms: - self.transforms[name] = transforms[name] - else: - # Without the function, the lambda will refer to the variable name instead of its value, - # which will make lambda reference the last value of the variable name - self.transforms[name] = (name, make_lambda(name)) - - def transform(self, x: dict[str, Float]) -> dict[str, Float]: - """ - Apply the transforms to the parameters. - - Parameters - ---------- - x : dict - A dictionary of parameters. Names should match the ones in the prior. - - Returns - ------- - x : dict - A dictionary of parameters with the transforms applied. - """ - output = {} - for value in self.transforms.values(): - output[value[0]] = value[1](x) - return output + self.parameter_names = parameter_names def add_name(self, x: Float[Array, " n_dim"]) -> dict[str, Float]: """ @@ -84,43 +53,33 @@ def add_name(self, x: Float[Array, " n_dim"]) -> dict[str, Float]: An array of parameters. Shape (n_dim,). """ - return dict(zip(self.naming, x)) + return dict(zip(self.parameter_names, x)) def sample( self, rng_key: PRNGKeyArray, n_samples: int ) -> dict[str, Float[Array, " n_samples"]]: raise NotImplementedError - def log_prob(self, x: dict[str, Array]) -> Float: + def log_prob(self, z: dict[str, Array]) -> Float: raise NotImplementedError @jaxtyped(typechecker=typechecker) -class Uniform(Prior): - xmin: float = 0.0 - xmax: float = 1.0 +class LogisticDistribution(Prior): def __repr__(self): - return f"Uniform(xmin={self.xmin}, xmax={self.xmax})" + return f"LogisticDistribution(parameter_names={self.parameter_names})" - def __init__( - self, - xmin: Float, - xmax: Float, - naming: list[str], - transforms: dict[str, tuple[str, Callable]] = {}, - **kwargs, - ): - super().__init__(naming, transforms) - assert self.n_dim == 1, "Uniform needs to be 1D distributions" - self.xmax = xmax - self.xmin = xmin + def __init__(self, parameter_names: list[str], **kwargs): + super().__init__(parameter_names) + self.composite = False + assert self.n_dim == 1, "LogisticDistribution needs to be 1D distributions" def sample( self, rng_key: PRNGKeyArray, n_samples: int ) -> dict[str, Float[Array, " n_samples"]]: """ - Sample from a uniform distribution. + Sample from a logistic distribution. Parameters ---------- @@ -135,72 +94,33 @@ def sample( Samples from the distribution. The keys are the names of the parameters. """ - samples = jax.random.uniform( - rng_key, (n_samples,), minval=self.xmin, maxval=self.xmax - ) + samples = jax.random.uniform(rng_key, (n_samples,), minval=0.0, maxval=1.0) + samples = jnp.log(samples / (1 - samples)) return self.add_name(samples[None]) - def log_prob(self, x: dict[str, Array]) -> Float: - variable = x[self.naming[0]] - output = jnp.where( - (variable >= self.xmax) | (variable <= self.xmin), - jnp.zeros_like(variable) - jnp.inf, - jnp.zeros_like(variable), - ) - return output + jnp.log(1.0 / (self.xmax - self.xmin)) + def log_prob(self, z: dict[str, Float]) -> Float: + variable = z[self.parameter_names[0]] + return -variable - 2 * jnp.log(1 + jnp.exp(-variable)) @jaxtyped(typechecker=typechecker) -class Unconstrained_Uniform(Prior): - xmin: float = 0.0 - xmax: float = 1.0 +class StandardNormalDistribution(Prior): def __repr__(self): - return f"Unconstrained_Uniform(xmin={self.xmin}, xmax={self.xmax})" + return f"StandardNormalDistribution(parameter_names={self.parameter_names})" - def __init__( - self, - xmin: Float, - xmax: Float, - naming: list[str], - transforms: dict[str, tuple[str, Callable]] = {}, - **kwargs, - ): - super().__init__(naming, transforms) - assert self.n_dim == 1, "Unconstrained_Uniform needs to be 1D distributions" - self.xmax = xmax - self.xmin = xmin - local_transform = self.transforms - - def new_transform(param): - param[self.naming[0]] = self.to_range(param[self.naming[0]]) - return local_transform[self.naming[0]][1](param) - - self.transforms = { - self.naming[0]: (local_transform[self.naming[0]][0], new_transform) - } - - def to_range(self, x: Float) -> Float: - """ - Transform the parameters to the range of the prior. - - Parameters - ---------- - x : Float - The parameters to transform. - - Returns - ------- - x : dict - A dictionary of parameters with the transforms applied. - """ - return (self.xmax - self.xmin) / (1 + jnp.exp(-x)) + self.xmin + def __init__(self, parameter_names: list[str], **kwargs): + super().__init__(parameter_names) + self.composite = False + assert ( + self.n_dim == 1 + ), "StandardNormalDistribution needs to be 1D distributions" def sample( self, rng_key: PRNGKeyArray, n_samples: int ) -> dict[str, Float[Array, " n_samples"]]: """ - Sample from a uniform distribution. + Sample from a standard normal distribution. Parameters ---------- @@ -211,513 +131,363 @@ def sample( Returns ------- - samples : - An array of shape (n_samples, n_dim) containing the samples. + samples : dict + Samples from the distribution. The keys are the names of the parameters. """ - samples = jax.random.uniform(rng_key, (n_samples,), minval=0, maxval=1) - samples = jnp.log(samples / (1 - samples)) + samples = jax.random.normal(rng_key, (n_samples,)) return self.add_name(samples[None]) - def log_prob(self, x: dict[str, Float]) -> Float: - variable = x[self.naming[0]] - return jnp.log(jnp.exp(-variable) / (1 + jnp.exp(-variable)) ** 2) + def log_prob(self, z: dict[str, Float]) -> Float: + variable = z[self.parameter_names[0]] + return -0.5 * variable**2 - 0.5 * jnp.log(2 * jnp.pi) -class Sphere(Prior): +class SequentialTransformPrior(Prior): """ - A prior on a sphere represented by Cartesian coordinates. - - Magnitude is sampled from a uniform distribution. + Transform a prior distribution by applying a sequence of transforms. + The space before the transform is named as x, + and the space after the transform is named as z """ - def __repr__(self): - return f"Sphere(naming={self.naming})" - - def __init__(self, naming: list[str], **kwargs): - name = naming[0] - self.naming = [f"{name}_theta", f"{name}_phi", f"{name}_mag"] - self.transforms = { - self.naming[0]: ( - f"{naming}_x", - lambda params: jnp.sin(params[self.naming[0]]) - * jnp.cos(params[self.naming[1]]) - * params[self.naming[2]], - ), - self.naming[1]: ( - f"{naming}_y", - lambda params: jnp.sin(params[self.naming[0]]) - * jnp.sin(params[self.naming[1]]) - * params[self.naming[2]], - ), - self.naming[2]: ( - f"{naming}_z", - lambda params: jnp.cos(params[self.naming[0]]) * params[self.naming[2]], - ), - } - - def sample( - self, rng_key: PRNGKeyArray, n_samples: int - ) -> dict[str, Float[Array, " n_samples"]]: - rng_keys = jax.random.split(rng_key, 3) - theta = jnp.arccos( - jax.random.uniform(rng_keys[0], (n_samples,), minval=-1.0, maxval=1.0) - ) - phi = jax.random.uniform(rng_keys[1], (n_samples,), minval=0, maxval=2 * jnp.pi) - mag = jax.random.uniform(rng_keys[2], (n_samples,), minval=0, maxval=1) - return self.add_name(jnp.stack([theta, phi, mag], axis=1).T) - - def log_prob(self, x: dict[str, Float]) -> Float: - theta = x[self.naming[0]] - phi = x[self.naming[1]] - mag = x[self.naming[2]] - output = jnp.where( - (mag > 1) - | (mag < 0) - | (phi > 2 * jnp.pi) - | (phi < 0) - | (theta > jnp.pi) - | (theta < 0), - jnp.zeros_like(0) - jnp.inf, - jnp.log(mag**2 * jnp.sin(x[self.naming[0]])), - ) - return output - - -@jaxtyped(typechecker=typechecker) -class AlignedSpin(Prior): - """ - Prior distribution for the aligned (z) component of the spin. - - This assume the prior distribution on the spin magnitude to be uniform in [0, amax] - with its orientation uniform on a sphere - - p(chi) = -log(|chi| / amax) / 2 / amax - - This is useful when comparing results between an aligned-spin run and - a precessing spin run. - - See (A7) of https://arxiv.org/abs/1805.10457. - """ - - amax: Float = 0.99 - chi_axis: Array = field(default_factory=lambda: jnp.linspace(0, 1, num=1000)) - cdf_vals: Array = field(default_factory=lambda: jnp.linspace(0, 1, num=1000)) + base_prior: Prior + transforms: list[BijectiveTransform] def __repr__(self): - return f"Alignedspin(amax={self.amax}, naming={self.naming})" + return f"Sequential(priors={self.base_prior}, parameter_names={self.parameter_names})" def __init__( self, - amax: Float, - naming: list[str], - transforms: dict[str, tuple[str, Callable]] = {}, - **kwargs, + base_prior: Prior, + transforms: list[BijectiveTransform], ): - super().__init__(naming, transforms) - assert self.n_dim == 1, "Alignedspin needs to be 1D distributions" - self.amax = amax - # build the interpolation table for the ppf of the one-sided distribution - chi_axis = jnp.linspace(1e-31, self.amax, num=1000) - cdf_vals = -chi_axis * (jnp.log(chi_axis / self.amax) - 1.0) / self.amax - self.chi_axis = chi_axis - self.cdf_vals = cdf_vals - - @property - def xmin(self): - return -self.amax - - @property - def xmax(self): - return self.amax + self.base_prior = base_prior + self.transforms = transforms + self.parameter_names = base_prior.parameter_names + for transform in transforms: + self.parameter_names = transform.propagate_name(self.parameter_names) + self.composite = True def sample( self, rng_key: PRNGKeyArray, n_samples: int ) -> dict[str, Float[Array, " n_samples"]]: - """ - Sample from the Alignedspin distribution. - - for chi > 0; - p(chi) = -log(chi / amax) / amax # halved normalization constant - cdf(chi) = -chi * (log(chi / amax) - 1) / amax - - Since there is a pole at chi=0, we will sample with the following steps - 1. Map the samples with quantile > 0.5 to positive chi and negative otherwise - 2a. For negative chi, map the quantile back to [0, 1] via q -> 2(0.5 - q) - 2b. For positive chi, map the quantile back to [0, 1] via q -> 2(q - 0.5) - 3. Map the quantile to chi via the ppf by checking against the table - built during the initialization - 4. add back the sign - - Parameters - ---------- - rng_key : PRNGKeyArray - A random key to use for sampling. - n_samples : int - The number of samples to draw. - - Returns - ------- - samples : dict - Samples from the distribution. The keys are the names of the parameters. + output = self.base_prior.sample(rng_key, n_samples) + return jax.vmap(self.transform)(output) + def log_prob(self, z: dict[str, Float]) -> Float: """ - q_samples = jax.random.uniform(rng_key, (n_samples,), minval=0.0, maxval=1.0) - # 1. calculate the sign of chi from the q_samples - sign_samples = jnp.where( - q_samples >= 0.5, - jnp.zeros_like(q_samples) + 1.0, - jnp.zeros_like(q_samples) - 1.0, - ) - # 2. remap q_samples - q_samples = jnp.where( - q_samples >= 0.5, - 2 * (q_samples - 0.5), - 2 * (0.5 - q_samples), - ) - # 3. map the quantile to chi via interpolation - samples = jnp.interp( - q_samples, - self.cdf_vals, - self.chi_axis, - ) - # 4. add back the sign - samples *= sign_samples - - return self.add_name(samples[None]) + Evaluating the probability of the transformed variable z. + This is what flowMC should sample from + """ + output = 0 + for transform in reversed(self.transforms): + z, log_jacobian = transform.inverse(z) + output += log_jacobian + output += self.base_prior.log_prob(z) + return output - def log_prob(self, x: dict[str, Float]) -> Float: - variable = x[self.naming[0]] - log_p = jnp.where( - (variable >= self.amax) | (variable <= -self.amax), - jnp.zeros_like(variable) - jnp.inf, - jnp.log(-jnp.log(jnp.absolute(variable) / self.amax) / 2.0 / self.amax), - ) - return log_p + def transform(self, x: dict[str, Float]) -> dict[str, Float]: + for transform in self.transforms: + x = transform.forward(x) + return x -@jaxtyped(typechecker=typechecker) -class EarthFrame(Prior): +class CombinePrior(Prior): """ - Prior distribution for sky location in Earth frame. + A prior class constructed by joinning multiple priors together to form a multivariate prior. + This assumes the priors composing the Combine class are independent. """ - ifos: list = field(default_factory=list) - gmst: float = 0.0 - delta_x: Float[Array, " 3"] = field(default_factory=lambda: jnp.zeros(3)) + base_prior: list[Prior] = field(default_factory=list) def __repr__(self): - return f"EarthFrame(naming={self.naming})" - - def __init__(self, gps: Float, ifos: list, **kwargs): - self.naming = ["zenith", "azimuth"] - if len(ifos) < 2: - return ValueError( - "At least two detectors are needed to define the Earth frame" - ) - elif isinstance(ifos[0], str): - self.ifos = [detector_preset[ifos[0]], detector_preset[ifos[1]]] - elif isinstance(ifos[0], GroundBased2G): - self.ifos = ifos[:1] - else: - return ValueError( - "ifos should be a list of detector names or GroundBased2G objects" - ) - self.gmst = float( - Time(gps, format="gps").sidereal_time("apparent", "greenwich").rad + return ( + f"Combine(priors={self.base_prior}, parameter_names={self.parameter_names})" ) - self.delta_x = self.ifos[1].vertex - self.ifos[0].vertex - - self.transforms = { - "azimuth": ( - "ra", - lambda params: zenith_azimuth_to_ra_dec( - params["zenith"], - params["azimuth"], - gmst=self.gmst, - delta_x=self.delta_x, - )[0], - ), - "zenith": ( - "dec", - lambda params: zenith_azimuth_to_ra_dec( - params["zenith"], - params["azimuth"], - gmst=self.gmst, - delta_x=self.delta_x, - )[1], - ), - } + + def __init__( + self, + priors: list[Prior], + ): + parameter_names = [] + for prior in priors: + parameter_names += prior.parameter_names + self.base_prior = priors + self.parameter_names = parameter_names + self.composite = True def sample( self, rng_key: PRNGKeyArray, n_samples: int ) -> dict[str, Float[Array, " n_samples"]]: - rng_keys = jax.random.split(rng_key, 2) - zenith = jnp.arccos( - jax.random.uniform(rng_keys[0], (n_samples,), minval=-1.0, maxval=1.0) - ) - azimuth = jax.random.uniform( - rng_keys[1], (n_samples,), minval=0, maxval=2 * jnp.pi - ) - return self.add_name(jnp.stack([zenith, azimuth], axis=1).T) - - def log_prob(self, x: dict[str, Float]) -> Float: - zenith = x["zenith"] - azimuth = x["azimuth"] - output = jnp.where( - (zenith > jnp.pi) | (zenith < 0) | (azimuth > 2 * jnp.pi) | (azimuth < 0), - jnp.zeros_like(0) - jnp.inf, - jnp.zeros_like(0), - ) - return output + jnp.log(jnp.sin(zenith)) + output = {} + for prior in self.base_prior: + rng_key, subkey = jax.random.split(rng_key) + output.update(prior.sample(subkey, n_samples)) + return output + def log_prob(self, z: dict[str, Float]) -> Float: + output = 0.0 + for prior in self.base_prior: + output += prior.log_prob(z) + return output -@jaxtyped(typechecker=typechecker) -class PowerLaw(Prior): - """ - A prior following the power-law with alpha in the range [xmin, xmax). - p(x) ~ x^{\alpha} - """ - xmin: float = 0.0 - xmax: float = 1.0 - alpha: float = 0.0 - normalization: float = 1.0 +@jaxtyped(typechecker=typechecker) +class UniformPrior(SequentialTransformPrior): + xmin: float + xmax: float def __repr__(self): - return f"Powerlaw(xmin={self.xmin}, xmax={self.xmax}, alpha={self.alpha}, naming={self.naming})" + return f"UniformPrior(xmin={self.xmin}, xmax={self.xmax}, parameter_names={self.parameter_names})" def __init__( self, xmin: float, xmax: float, - alpha: Union[Int, float], - naming: list[str], - transforms: dict[str, tuple[str, Callable]] = {}, - **kwargs, + parameter_names: list[str], ): - super().__init__(naming, transforms) - if alpha < 0.0: - assert xmin > 0.0, "With negative alpha, xmin must > 0" - assert self.n_dim == 1, "Powerlaw needs to be 1D distributions" + self.parameter_names = parameter_names + assert self.n_dim == 1, "UniformPrior needs to be 1D distributions" self.xmax = xmax self.xmin = xmin - self.alpha = alpha - if alpha == -1: - self.normalization = float(1.0 / jnp.log(self.xmax / self.xmin)) - else: - self.normalization = (1 + self.alpha) / ( - self.xmax ** (1 + self.alpha) - self.xmin ** (1 + self.alpha) - ) - - def sample( - self, rng_key: PRNGKeyArray, n_samples: int - ) -> dict[str, Float[Array, " n_samples"]]: - """ - Sample from a power-law distribution. - - Parameters - ---------- - rng_key : PRNGKeyArray - A random key to use for sampling. - n_samples : int - The number of samples to draw. - - Returns - ------- - samples : dict - Samples from the distribution. The keys are the names of the parameters. - - """ - q_samples = jax.random.uniform(rng_key, (n_samples,), minval=0.0, maxval=1.0) - if self.alpha == -1: - samples = self.xmin * jnp.exp(q_samples * jnp.log(self.xmax / self.xmin)) - else: - samples = ( - self.xmin ** (1.0 + self.alpha) - + q_samples - * (self.xmax ** (1.0 + self.alpha) - self.xmin ** (1.0 + self.alpha)) - ) ** (1.0 / (1.0 + self.alpha)) - return self.add_name(samples[None]) - - def log_prob(self, x: dict[str, Float]) -> Float: - variable = x[self.naming[0]] - log_in_range = jnp.where( - (variable >= self.xmax) | (variable <= self.xmin), - jnp.zeros_like(variable) - jnp.inf, - jnp.zeros_like(variable), + super().__init__( + LogisticDistribution([f"{self.parameter_names[0]}_base"]), + [ + LogitTransform( + ( + [f"{self.parameter_names[0]}_base"], + [f"({self.parameter_names[0]}-({xmin}))/{(xmax-xmin)}"], + ) + ), + ScaleTransform( + ( + [f"({self.parameter_names[0]}-({xmin}))/{(xmax-xmin)}"], + [f"{self.parameter_names[0]}-({xmin})"], + ), + xmax - xmin, + ), + OffsetTransform( + ([f"{self.parameter_names[0]}-({xmin})"], self.parameter_names), + xmin, + ), + ], ) - log_p = self.alpha * jnp.log(variable) + jnp.log(self.normalization) - return log_p + log_in_range @jaxtyped(typechecker=typechecker) -class Exponential(Prior): +class SinePrior(SequentialTransformPrior): """ - A prior following the power-law with alpha in the range [xmin, xmax). - p(x) ~ exp(\alpha x) + A prior distribution where the pdf is proportional to sin(x) in the range [0, pi]. """ - xmin: float = 0.0 - xmax: float = jnp.inf - alpha: float = -1.0 - normalization: float = 1.0 - def __repr__(self): - return f"Exponential(xmin={self.xmin}, xmax={self.xmax}, alpha={self.alpha}, naming={self.naming})" - - def __init__( - self, - xmin: Float, - xmax: Float, - alpha: Union[Int, Float], - naming: list[str], - transforms: dict[str, tuple[str, Callable]] = {}, - **kwargs, - ): - super().__init__(naming, transforms) - if alpha < 0.0: - assert xmin != -jnp.inf, "With negative alpha, xmin must finite" - if alpha > 0.0: - assert xmax != jnp.inf, "With positive alpha, xmax must finite" - assert not jnp.isclose(alpha, 0.0), "alpha=zero is given, use Uniform instead" - assert self.n_dim == 1, "Exponential needs to be 1D distributions" - - self.xmax = xmax - self.xmin = xmin - self.alpha = alpha - - self.normalization = self.alpha / ( - jnp.exp(self.alpha * self.xmax) - jnp.exp(self.alpha * self.xmin) + return f"SinePrior(parameter_names={self.parameter_names})" + + def __init__(self, parameter_names: list[str]): + self.parameter_names = parameter_names + assert self.n_dim == 1, "SinePrior needs to be 1D distributions" + super().__init__( + CosinePrior([f"{self.parameter_names[0]}-pi/2"]), + [ + OffsetTransform( + ( + ( + [f"{self.parameter_names[0]}-pi/2"], + [f"{self.parameter_names[0]}"], + ) + ), + jnp.pi / 2, + ) + ], ) - def sample( - self, rng_key: PRNGKeyArray, n_samples: int - ) -> dict[str, Float[Array, " n_samples"]]: - """ - Sample from a exponential distribution. - - Parameters - ---------- - rng_key : PRNGKeyArray - A random key to use for sampling. - n_samples : int - The number of samples to draw. - - Returns - ------- - samples : dict - Samples from the distribution. The keys are the names of the parameters. - """ - q_samples = jax.random.uniform(rng_key, (n_samples,), minval=0.0, maxval=1.0) - samples = ( - self.xmin - + jnp.log1p( - q_samples * (jnp.exp(self.alpha * (self.xmax - self.xmin)) - 1.0) - ) - / self.alpha - ) - return self.add_name(samples[None]) +@jaxtyped(typechecker=typechecker) +class CosinePrior(SequentialTransformPrior): + """ + A prior distribution where the pdf is proportional to cos(x) in the range [-pi/2, pi/2]. + """ - def log_prob(self, x: dict[str, Float]) -> Float: - variable = x[self.naming[0]] - log_in_range = jnp.where( - (variable >= self.xmax) | (variable <= self.xmin), - jnp.zeros_like(variable) - jnp.inf, - jnp.zeros_like(variable), + def __repr__(self): + return f"CosinePrior(parameter_names={self.parameter_names})" + + def __init__(self, parameter_names: list[str]): + self.parameter_names = parameter_names + assert self.n_dim == 1, "CosinePrior needs to be 1D distributions" + super().__init__( + UniformPrior(-1.0, 1.0, [f"sin({self.parameter_names[0]})"]), + [ + ArcSineTransform( + ([f"sin({self.parameter_names[0]})"], [self.parameter_names[0]]) + ) + ], ) - log_p = self.alpha * variable + jnp.log(self.normalization) - return log_p + log_in_range @jaxtyped(typechecker=typechecker) -class Normal(Prior): - mean: Float = 0.0 - std: Float = 1.0 +class UniformSpherePrior(CombinePrior): def __repr__(self): - return f"Normal(mean={self.mean}, std={self.std})" - - def __init__( - self, - mean: Float, - std: Float, - naming: list[str], - transforms: dict[str, tuple[str, Callable]] = {}, - **kwargs, - ): - super().__init__(naming, transforms) - assert self.n_dim == 1, "Normal needs to be 1D distributions" - self.mean = mean - self.std = std - - def sample( - self, rng_key: PRNGKeyArray, n_samples: int - ) -> dict[str, Float[Array, " n_samples"]]: - """ - Sample from a normal distribution. - - Parameters - ---------- - rng_key : PRNGKeyArray - A random key to use for sampling. - n_samples : int - The number of samples to draw. - - Returns - ------- - samples : dict - Samples from the distribution. The keys are the names of the parameters. - - """ - samples = jax.random.normal(rng_key, (n_samples,)) - samples = self.mean + samples * self.std - return self.add_name(samples[None]) - - def log_prob(self, x: dict[str, Array]) -> Float: - variable = x[self.naming[0]] - output = ( - -0.5 * jnp.log(2 * jnp.pi) - - jnp.log(self.std) - - 0.5 * ((variable - self.mean) / self.std) ** 2 + return f"UniformSpherePrior(parameter_names={self.parameter_names})" + + def __init__(self, parameter_names: list[str], max_mag: float = 1.0, **kwargs): + self.parameter_names = parameter_names + assert self.n_dim == 1, "UniformSpherePrior only takes the name of the vector" + self.parameter_names = [ + f"{self.parameter_names[0]}_mag", + f"{self.parameter_names[0]}_theta", + f"{self.parameter_names[0]}_phi", + ] + super().__init__( + [ + UniformPrior(0.0, max_mag, [self.parameter_names[0]]), + SinePrior([self.parameter_names[1]]), + UniformPrior(0.0, 2 * jnp.pi, [self.parameter_names[2]]), + ] ) - return output -class Composite(Prior): - priors: list[Prior] = field(default_factory=list) +@jaxtyped(typechecker=typechecker) +class PowerLawPrior(SequentialTransformPrior): + xmin: float + xmax: float + alpha: float def __repr__(self): - return f"Composite(priors={self.priors}, naming={self.naming})" + return f"PowerLawPrior(xmin={self.xmin}, xmax={self.xmax}, alpha={self.alpha}, naming={self.parameter_names})" def __init__( self, - priors: list[Prior], - transforms: dict[str, tuple[str, Callable]] = {}, - **kwargs, + xmin: float, + xmax: float, + alpha: float, + parameter_names: list[str], ): - naming = [] - self.transforms = {} - for prior in priors: - naming += prior.naming - self.transforms.update(prior.transforms) - self.priors = priors - self.naming = naming - self.transforms.update(transforms) + self.parameter_names = parameter_names + assert self.n_dim == 1, "Power law needs to be 1D distributions" + self.xmax = xmax + self.xmin = xmin + self.alpha = alpha + assert self.xmin < self.xmax, "xmin must be less than xmax" + assert self.xmin > 0.0, "x must be positive" + if self.alpha == -1.0: + transform = ParetoTransform( + ([f"{self.parameter_names[0]}_before_transform"], self.parameter_names), + xmin, + xmax, + ) + else: + transform = PowerLawTransform( + ([f"{self.parameter_names[0]}_before_transform"], self.parameter_names), + xmin, + xmax, + alpha, + ) + super().__init__( + LogisticDistribution([f"{self.parameter_names[0]}_base"]), + [ + LogitTransform( + ( + [f"{self.parameter_names[0]}_base"], + [f"{self.parameter_names[0]}_before_transform"], + ) + ), + transform, + ], + ) - def sample( - self, rng_key: PRNGKeyArray, n_samples: int - ) -> dict[str, Float[Array, " n_samples"]]: - output = {} - for prior in self.priors: - rng_key, subkey = jax.random.split(rng_key) - output.update(prior.sample(subkey, n_samples)) - return output - def log_prob(self, x: dict[str, Float]) -> Float: - output = 0.0 - for prior in self.priors: - output += prior.log_prob(x) - return output +def trace_prior_parent(prior: Prior, output: list[Prior] = []) -> list[Prior]: + if prior.composite: + if isinstance(prior.base_prior, list): + for subprior in prior.base_prior: + output = trace_prior_parent(subprior, output) + elif isinstance(prior.base_prior, Prior): + output = trace_prior_parent(prior.base_prior, output) + else: + output.append(prior) + + return output + + +# ====================== Things below may need rework ====================== + +# @jaxtyped(typechecker=typechecker) +# class Exponential(Prior): +# """ +# A prior following the power-law with alpha in the range [xmin, xmax). +# p(x) ~ exp(\alpha x) +# """ + +# xmin: float = 0.0 +# xmax: float = jnp.inf +# alpha: float = -1.0 +# normalization: float = 1.0 + +# def __repr__(self): +# return f"Exponential(xmin={self.xmin}, xmax={self.xmax}, alpha={self.alpha}, naming={self.naming})" + +# def __init__( +# self, +# xmin: Float, +# xmax: Float, +# alpha: Union[Int, Float], +# naming: list[str], +# transforms: dict[str, tuple[str, Callable]] = {}, +# **kwargs, +# ): +# super().__init__(naming, transforms) +# if alpha < 0.0: +# assert xmin != -jnp.inf, "With negative alpha, xmin must finite" +# if alpha > 0.0: +# assert xmax != jnp.inf, "With positive alpha, xmax must finite" +# assert not jnp.isclose(alpha, 0.0), "alpha=zero is given, use Uniform instead" +# assert self.n_dim == 1, "Exponential needs to be 1D distributions" + +# self.xmax = xmax +# self.xmin = xmin +# self.alpha = alpha + +# self.normalization = self.alpha / ( +# jnp.exp(self.alpha * self.xmax) - jnp.exp(self.alpha * self.xmin) +# ) + +# def sample( +# self, rng_key: PRNGKeyArray, n_samples: int +# ) -> dict[str, Float[Array, " n_samples"]]: +# """ +# Sample from a exponential distribution. + +# Parameters +# ---------- +# rng_key : PRNGKeyArray +# A random key to use for sampling. +# n_samples : int +# The number of samples to draw. + +# Returns +# ------- +# samples : dict +# Samples from the distribution. The keys are the names of the parameters. + +# """ +# q_samples = jax.random.uniform(rng_key, (n_samples,), minval=0.0, maxval=1.0) +# samples = ( +# self.xmin +# + jnp.log1p( +# q_samples * (jnp.exp(self.alpha * (self.xmax - self.xmin)) - 1.0) +# ) +# / self.alpha +# ) +# return self.add_name(samples[None]) + +# def log_prob(self, x: dict[str, Float]) -> Float: +# variable = x[self.naming[0]] +# log_in_range = jnp.where( +# (variable >= self.xmax) | (variable <= self.xmin), +# jnp.zeros_like(variable) - jnp.inf, +# jnp.zeros_like(variable), +# ) +# log_p = self.alpha * variable + jnp.log(self.normalization) +# return log_p + log_in_range diff --git a/src/jimgw/single_event/likelihood.py b/src/jimgw/single_event/likelihood.py index f10aeed1..96e11e62 100644 --- a/src/jimgw/single_event/likelihood.py +++ b/src/jimgw/single_event/likelihood.py @@ -12,8 +12,9 @@ from jimgw.base import LikelihoodBase from jimgw.prior import Prior from jimgw.single_event.detector import Detector -from jimgw.single_event.utils import log_i0 +from jimgw.utils import log_i0 from jimgw.single_event.waveform import Waveform +from jimgw.transforms import BijectiveTransform, NtoMTransform class SingleEventLiklihood(LikelihoodBase): @@ -25,6 +26,15 @@ def __init__(self, detectors: list[Detector], waveform: Waveform) -> None: self.waveform = waveform +class ZeroLikelihood(LikelihoodBase): + + def __init__(self): + pass + + def evaluate(self, params: dict[str, Float], data: dict) -> Float: + return 0.0 + + class TransientLikelihoodFD(SingleEventLiklihood): def __init__( self, @@ -184,8 +194,6 @@ def __init__( self, detectors: list[Detector], waveform: Waveform, - prior: Prior, - bounds: Float[Array, " n_dim 2"], n_bins: int = 100, trigger_time: float = 0, duration: float = 4, @@ -194,6 +202,9 @@ def __init__( n_steps: int = 2000, ref_params: dict = {}, reference_waveform: Optional[Waveform] = None, + prior: Optional[Prior] = None, + sample_transforms: list[BijectiveTransform] = [], + likelihood_transforms: list[NtoMTransform] = [], **kwargs, ) -> None: super().__init__( @@ -254,17 +265,24 @@ def __init__( ) self.freq_grid_low = freq_grid[:-1] - if not ref_params: + if ref_params: + self.ref_params = ref_params + print(f"Reference parameters provided, which are {self.ref_params}") + elif prior: print("No reference parameters are provided, finding it...") ref_params = self.maximize_likelihood( - bounds=bounds, prior=prior, popsize=popsize, n_steps=n_steps + prior=prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + popsize=popsize, + n_steps=n_steps, ) self.ref_params = {key: float(value) for key, value in ref_params.items()} print(f"The reference parameters are {self.ref_params}") else: - self.ref_params = ref_params - print(f"Reference parameters provided, which are {self.ref_params}") - + raise ValueError( + "Either reference parameters or parameter names must be provided" + ) # safe guard for the reference parameters # since ripple cannot handle eta=0.25 if jnp.isclose(self.ref_params["eta"], 0.25): @@ -542,25 +560,71 @@ def compute_coefficients(data, h_ref, psd, freqs, f_bins, f_bins_center): def maximize_likelihood( self, prior: Prior, - bounds: Float[Array, " n_dim 2"], + likelihood_transforms: list[NtoMTransform], + sample_transforms: list[BijectiveTransform], popsize: int = 100, n_steps: int = 2000, ): + parameter_names = prior.parameter_names + for transform in sample_transforms: + parameter_names = transform.propagate_name(parameter_names) + def y(x): - return -self.evaluate_original(prior.transform(prior.add_name(x)), {}) + named_params = dict(zip(parameter_names, x)) + for transform in reversed(sample_transforms): + named_params = transform.backward(named_params) + for transform in likelihood_transforms: + named_params = transform.forward(named_params) + return -self.evaluate_original(named_params, {}) print("Starting the optimizer") + optimizer = optimization_Adam( n_steps=n_steps, learning_rate=0.001, noise_level=1 ) - initial_position = jnp.array( - list(prior.sample(jax.random.PRNGKey(0), popsize).values()) - ).T + + key = jax.random.PRNGKey(0) + initial_position = jnp.zeros((popsize, prior.n_dim)) + jnp.nan + while not jax.tree.reduce( + jnp.logical_and, jax.tree.map(lambda x: jnp.isfinite(x), initial_position) + ).all(): + non_finite_index = jnp.where( + jnp.any( + ~jax.tree.reduce( + jnp.logical_and, + jax.tree.map(lambda x: jnp.isfinite(x), initial_position), + ), + axis=1, + ) + )[0] + + key, subkey = jax.random.split(key) + guess = prior.sample(subkey, popsize) + for transform in sample_transforms: + guess = jax.vmap(transform.forward)(guess) + guess = jnp.array( + jax.tree.leaves({key: guess[key] for key in parameter_names}) + ).T + finite_guess = jnp.where( + jnp.all(jax.tree.map(lambda x: jnp.isfinite(x), guess), axis=1) + )[0] + common_length = min(len(finite_guess), len(non_finite_index)) + initial_position = initial_position.at[ + non_finite_index[:common_length] + ].set(guess[:common_length]) + rng_key, optimized_positions, summary = optimizer.optimize( jax.random.PRNGKey(12094), y, initial_position ) - best_fit = optimized_positions[jnp.nanargmin(summary["final_log_prob"])] - return prior.transform(prior.add_name(best_fit)) + + best_fit = optimized_positions[jnp.argmin(summary["final_log_prob"])] + + named_params = dict(zip(parameter_names, best_fit)) + for transform in reversed(sample_transforms): + named_params = transform.backward(named_params) + for transform in likelihood_transforms: + named_params = transform.forward(named_params) + return named_params likelihood_presets = { diff --git a/src/jimgw/single_event/prior.py b/src/jimgw/single_event/prior.py new file mode 100644 index 00000000..194262f0 --- /dev/null +++ b/src/jimgw/single_event/prior.py @@ -0,0 +1,138 @@ +from beartype import beartype as typechecker +from jaxtyping import jaxtyped + +from jimgw.prior import ( + PowerLawPrior, +) + + +@jaxtyped(typechecker=typechecker) +class UniformComponentChirpMassPrior(PowerLawPrior): + """ + A prior in the range [xmin, xmax) for chirp mass which assumes the + component masses to be uniformly distributed. + + p(M_c) ~ M_c + """ + + def __repr__(self): + return f"UniformInComponentsChirpMassPrior(xmin={self.xmin}, xmax={self.xmax}, naming={self.parameter_names})" + + def __init__(self, xmin: float, xmax: float): + super().__init__(xmin, xmax, 1.0, ["M_c"]) + + +# ====================== Things below may need rework ====================== + + +# @jaxtyped(typechecker=typechecker) +# class AlignedSpin(Prior): +# """ +# Prior distribution for the aligned (z) component of the spin. + +# This assume the prior distribution on the spin magnitude to be uniform in [0, amax] +# with its orientation uniform on a sphere + +# p(chi) = -log(|chi| / amax) / 2 / amax + +# This is useful when comparing results between an aligned-spin run and +# a precessing spin run. + +# See (A7) of https://arxiv.org/abs/1805.10457. +# """ + +# amax: Float = 0.99 +# chi_axis: Array = field(default_factory=lambda: jnp.linspace(0, 1, num=1000)) +# cdf_vals: Array = field(default_factory=lambda: jnp.linspace(0, 1, num=1000)) + +# def __repr__(self): +# return f"Alignedspin(amax={self.amax}, naming={self.naming})" + +# def __init__( +# self, +# amax: Float, +# naming: list[str], +# transforms: dict[str, tuple[str, Callable]] = {}, +# **kwargs, +# ): +# super().__init__(naming, transforms) +# assert self.n_dim == 1, "Alignedspin needs to be 1D distributions" +# self.amax = amax + +# # build the interpolation table for the ppf of the one-sided distribution +# chi_axis = jnp.linspace(1e-31, self.amax, num=1000) +# cdf_vals = -chi_axis * (jnp.log(chi_axis / self.amax) - 1.0) / self.amax +# self.chi_axis = chi_axis +# self.cdf_vals = cdf_vals + +# @property +# def xmin(self): +# return -self.amax + +# @property +# def xmax(self): +# return self.amax + +# def sample( +# self, rng_key: PRNGKeyArray, n_samples: int +# ) -> dict[str, Float[Array, " n_samples"]]: +# """ +# Sample from the Alignedspin distribution. + +# for chi > 0; +# p(chi) = -log(chi / amax) / amax # halved normalization constant +# cdf(chi) = -chi * (log(chi / amax) - 1) / amax + +# Since there is a pole at chi=0, we will sample with the following steps +# 1. Map the samples with quantile > 0.5 to positive chi and negative otherwise +# 2a. For negative chi, map the quantile back to [0, 1] via q -> 2(0.5 - q) +# 2b. For positive chi, map the quantile back to [0, 1] via q -> 2(q - 0.5) +# 3. Map the quantile to chi via the ppf by checking against the table +# built during the initialization +# 4. add back the sign + +# Parameters +# ---------- +# rng_key : PRNGKeyArray +# A random key to use for sampling. +# n_samples : int +# The number of samples to draw. + +# Returns +# ------- +# samples : dict +# Samples from the distribution. The keys are the names of the parameters. + +# """ +# q_samples = jax.random.uniform(rng_key, (n_samples,), minval=0.0, maxval=1.0) +# # 1. calculate the sign of chi from the q_samples +# sign_samples = jnp.where( +# q_samples >= 0.5, +# jnp.zeros_like(q_samples) + 1.0, +# jnp.zeros_like(q_samples) - 1.0, +# ) +# # 2. remap q_samples +# q_samples = jnp.where( +# q_samples >= 0.5, +# 2 * (q_samples - 0.5), +# 2 * (0.5 - q_samples), +# ) +# # 3. map the quantile to chi via interpolation +# samples = jnp.interp( +# q_samples, +# self.cdf_vals, +# self.chi_axis, +# ) +# # 4. add back the sign +# samples *= sign_samples + +# return self.add_name(samples[None]) + +# def log_prob(self, x: dict[str, Float]) -> Float: +# variable = x[self.naming[0]] +# log_p = jnp.where( +# (variable >= self.amax) | (variable <= -self.amax), +# jnp.zeros_like(variable) - jnp.inf, +# jnp.log(-jnp.log(jnp.absolute(variable) / self.amax) / 2.0 / self.amax), +# ) +# return log_p diff --git a/src/jimgw/single_event/runManager.py b/src/jimgw/single_event/runManager.py index 3f65166d..7b720c30 100644 --- a/src/jimgw/single_event/runManager.py +++ b/src/jimgw/single_event/runManager.py @@ -4,6 +4,8 @@ import jax import jax.numpy as jnp import matplotlib.pyplot as plt +import corner +import numpy as np import yaml from astropy.time import Time from jaxlib.xla_extension import ArrayImpl @@ -71,7 +73,8 @@ class SingleEventRun: str, dict[str, Union[str, float, int, bool]] ] # Transform cannot be included in this way, add it to preset if used often. jim_parameters: dict[str, Union[str, float, int, bool, dict]] - injection_parameters: dict[str, float] + path: str = "./experiment" + injection_parameters: dict[str, float] = field(default_factory=lambda: {}) injection: bool = False likelihood_parameters: dict[str, Union[str, float, int, bool, PyTree]] = field( default_factory=lambda: {"name": "TransientLikelihoodFD"} @@ -123,6 +126,9 @@ def __init__(self, **kwargs): print("Neither run instance nor path provided.") raise ValueError + if self.run.injection and not self.run.injection_parameters: + raise ValueError("Injection mode requires injection parameters.") + local_prior = self.initialize_prior() local_likelihood = self.initialize_likelihood(local_prior) self.jim = Jim(local_likelihood, local_prior, **self.run.jim_parameters) @@ -150,6 +156,7 @@ def initialize_likelihood(self, prior: prior.Prior) -> SingleEventLiklihood: waveform = self.initialize_waveform() name = self.run.likelihood_parameters["name"] assert isinstance(name, str), "Likelihood name must be a string." + assert name in likelihood_presets, f"Likelihood {name} not recognized." if self.run.injection: freqs = jnp.linspace( self.run.data_parameters["f_min"], @@ -351,3 +358,73 @@ def plot_data(self, path: str): plt.ylabel("Amplitude") plt.legend() plt.savefig(path) + + def sample(self): + self.jim.sample(jax.random.PRNGKey(self.run.seed)) + + def get_samples(self): + return self.jim.get_samples() + + def plot_corner(self, path: str = "corner.jpeg", **kwargs): + """ + plot corner plot of the samples. + """ + plot_datapoint = kwargs.get("plot_datapoints", False) + title_quantiles = kwargs.get("title_quantiles", [0.16, 0.5, 0.84]) + show_titles = kwargs.get("show_titles", True) + title_fmt = kwargs.get("title_fmt", ".2E") + use_math_text = kwargs.get("use_math_text", True) + + samples = self.jim.get_samples() + param_names = list(samples.keys()) + samples = np.array(list(samples.values())).reshape(int(len(param_names)), -1).T + corner.corner( + samples, + labels=param_names, + plot_datapoints=plot_datapoint, + title_quantiles=title_quantiles, + show_titles=show_titles, + title_fmt=title_fmt, + use_math_text=use_math_text, + **kwargs, + ) + plt.savefig(path) + plt.close() + + def plot_diagnostic(self, path: str = "diagnostic.jpeg", **kwargs): + """ + plot diagnostic plot of the samples. + """ + summary = self.jim.Sampler.get_sampler_state(training=True) + chains, log_prob, local_accs, global_accs, loss_vals = summary.values() + log_prob = np.array(log_prob) + + plt.figure(figsize=(10, 10)) + axs = [plt.subplot(2, 2, i + 1) for i in range(4)] + plt.sca(axs[0]) + plt.title("log probability") + plt.plot(log_prob.mean(0)) + plt.xlabel("iteration") + plt.xlim(0, None) + + plt.sca(axs[1]) + plt.title("NF loss") + plt.plot(loss_vals.reshape(-1)) + plt.xlabel("iteration") + plt.xlim(0, None) + + plt.sca(axs[2]) + plt.title("Local Acceptance") + plt.plot(local_accs.mean(0)) + plt.xlabel("iteration") + plt.xlim(0, None) + + plt.sca(axs[3]) + plt.title("Global Acceptance") + plt.plot(global_accs.mean(0)) + plt.xlabel("iteration") + plt.xlim(0, None) + plt.tight_layout() + + plt.savefig(path) + plt.close() diff --git a/src/jimgw/single_event/transforms.py b/src/jimgw/single_event/transforms.py new file mode 100644 index 00000000..e9983f06 --- /dev/null +++ b/src/jimgw/single_event/transforms.py @@ -0,0 +1,482 @@ +import jax.numpy as jnp +from beartype import beartype as typechecker +from jaxtyping import Float, Array, jaxtyped +from astropy.time import Time + +from jimgw.single_event.detector import GroundBased2G +from jimgw.transforms import ( + ConditionalBijectiveTransform, + BijectiveTransform, + NtoNTransform, + reverse_bijective_transform, +) +from jimgw.single_event.utils import ( + m1_m2_to_Mc_q, + Mc_q_to_m1_m2, + m1_m2_to_Mc_eta, + Mc_eta_to_m1_m2, + q_to_eta, + eta_to_q, + ra_dec_to_zenith_azimuth, + zenith_azimuth_to_ra_dec, + euler_rotation, + spin_to_cartesian_spin, +) + + +@jaxtyped(typechecker=typechecker) +class PrecessingSpinToCartesianSpinTransform(NtoNTransform): + """ + Spin to Cartesian spin transformation + """ + + freq_ref: Float + + def __init__( + self, + freq_ref: Float, + ): + name_mapping = ( + ["theta_jn", "phi_jl", "tilt_1", "tilt_2", "phi_12", "a_1", "a_2"], + ["iota", "s1_x", "s1_y", "s1_z", "s2_x", "s2_y", "s2_z"], + ) + super().__init__(name_mapping) + + self.freq_ref = freq_ref + + def named_transform(x): + iota, s1x, s1y, s1z, s2x, s2y, s2z = spin_to_cartesian_spin( + x["theta_jn"], + x["phi_jl"], + x["tilt_1"], + x["tilt_2"], + x["phi_12"], + x["a_1"], + x["a_2"], + x["M_c"], + x["q"], + self.freq_ref, + x["phase_c"], + ) + return { + "iota": iota, + "s1_x": s1x, + "s1_y": s1y, + "s1_z": s1z, + "s2_x": s2x, + "s2_y": s2y, + "s2_z": s2z, + } + + self.transform_func = named_transform + + +@jaxtyped(typechecker=typechecker) +class SphereSpinToCartesianSpinTransform(BijectiveTransform): + """ + Spin to Cartesian spin transformation + """ + + def __init__( + self, + label: str, + ): + name_mapping = ( + [label + "_mag", label + "_theta", label + "_phi"], + [label + "_x", label + "_y", label + "_z"], + ) + super().__init__(name_mapping) + + def named_transform(x): + mag, theta, phi = x[label + "_mag"], x[label + "_theta"], x[label + "_phi"] + x = mag * jnp.sin(theta) * jnp.cos(phi) + y = mag * jnp.sin(theta) * jnp.sin(phi) + z = mag * jnp.cos(theta) + return { + label + "_x": x, + label + "_y": y, + label + "_z": z, + } + + def named_inverse_transform(x): + x, y, z = x[label + "_x"], x[label + "_y"], x[label + "_z"] + mag = jnp.sqrt(x**2 + y**2 + z**2) + theta = jnp.arccos(z / mag) + phi = jnp.arctan2(y, x) + return { + label + "_mag": mag, + label + "_theta": theta, + label + "_phi": phi, + } + + self.transform_func = named_transform + self.inverse_transform_func = named_inverse_transform + + +@jaxtyped(typechecker=typechecker) +class SkyFrameToDetectorFrameSkyPositionTransform(BijectiveTransform): + """ + Transform sky frame to detector frame sky position + """ + + gmst: Float + rotation: Float[Array, " 3 3"] + rotation_inv: Float[Array, " 3 3"] + + def __init__( + self, + gps_time: Float, + ifos: list[GroundBased2G], + ): + name_mapping = (["ra", "dec"], ["zenith", "azimuth"]) + super().__init__(name_mapping) + + self.gmst = ( + Time(gps_time, format="gps").sidereal_time("apparent", "greenwich").rad + ) + delta_x = ifos[0].vertex - ifos[1].vertex + self.rotation = euler_rotation(delta_x) + self.rotation_inv = jnp.linalg.inv(self.rotation) + + def named_transform(x): + zenith, azimuth = ra_dec_to_zenith_azimuth( + x["ra"], x["dec"], self.gmst, self.rotation + ) + return {"zenith": zenith, "azimuth": azimuth} + + self.transform_func = named_transform + + def named_inverse_transform(x): + ra, dec = zenith_azimuth_to_ra_dec( + x["zenith"], x["azimuth"], self.gmst, self.rotation_inv + ) + return {"ra": ra, "dec": dec} + + self.inverse_transform_func = named_inverse_transform + + +@jaxtyped(typechecker=typechecker) +class GeocentricArrivalTimeToDetectorArrivalTimeTransform( + ConditionalBijectiveTransform +): + """ + Transform the geocentric arrival time to detector arrival time + + In the geocentric convention, the arrival time of the signal at the + center of Earth is gps_time + t_c + + In the detector convention, the arrival time of the signal at the + detecotr is gps_time + time_delay_from_geo_to_det + t_det + + Parameters + ---------- + name_mapping : tuple[list[str], list[str]] + The name mapping between the input and output dictionary. + + """ + + gmst: Float + ifo: GroundBased2G + tc_min: Float + tc_max: Float + + def __init__( + self, + gps_time: Float, + ifo: GroundBased2G, + tc_min: Float, + tc_max: Float, + ): + name_mapping = (["t_c"], ["t_det_unbounded"]) + conditional_names = ["ra", "dec"] + super().__init__(name_mapping, conditional_names) + + self.gmst = ( + Time(gps_time, format="gps").sidereal_time("apparent", "greenwich").rad + ) + self.ifo = ifo + self.tc_min = tc_min + self.tc_max = tc_max + + assert "t_c" in name_mapping[0] and "t_det_unbounded" in name_mapping[1] + assert "ra" in conditional_names and "dec" in conditional_names + + def time_delay(ra, dec, gmst): + return self.ifo.delay_from_geocenter(ra, dec, gmst) + + def named_transform(x): + + time_shift = time_delay(x["ra"], x["dec"], self.gmst) + + t_det = x["t_c"] + time_shift + t_det_min = self.tc_min + time_shift + t_det_max = self.tc_max + time_shift + + y = (t_det - t_det_min) / (t_det_max - t_det_min) + t_det_unbounded = jnp.log(y / (1.0 - y)) + return { + "t_det_unbounded": t_det_unbounded, + } + + self.transform_func = named_transform + + def named_inverse_transform(x): + + time_shift = self.ifo.delay_from_geocenter(x["ra"], x["dec"], self.gmst) + + t_det_min = self.tc_min + time_shift + t_det_max = self.tc_max + time_shift + t_det = (t_det_max - t_det_min) / ( + 1.0 + jnp.exp(-x["t_det_unbounded"]) + ) + t_det_min + + t_c = t_det - time_shift + + return { + "t_c": t_c, + } + + self.inverse_transform_func = named_inverse_transform + + +@jaxtyped(typechecker=typechecker) +class GeocentricArrivalPhaseToDetectorArrivalPhaseTransform( + ConditionalBijectiveTransform +): + """ + Transform the geocentric arrival phase to detector arrival phase + + In the geocentric convention, the arrival phase of the signal at the + center of Earth is phase_c / 2 (in ripple, phase_c is the orbital phase) + + In the detector convention, the arrival phase of the signal at the + detecotr is phase_det = phase_c / 2 + arg R_det + + Parameters + ---------- + name_mapping : tuple[list[str], list[str]] + The name mapping between the input and output dictionary. + + """ + + gmst: Float + ifo: GroundBased2G + + def __init__( + self, + gps_time: Float, + ifo: GroundBased2G, + ): + name_mapping = (["phase_c"], ["phase_det"]) + conditional_names = ["ra", "dec", "psi", "iota"] + super().__init__(name_mapping, conditional_names) + + self.gmst = ( + Time(gps_time, format="gps").sidereal_time("apparent", "greenwich").rad + ) + self.ifo = ifo + + assert "phase_c" in name_mapping[0] and "phase_det" in name_mapping[1] + assert ( + "ra" in conditional_names + and "dec" in conditional_names + and "psi" in conditional_names + and "iota" in conditional_names + ) + + def _calc_R_det_arg(ra, dec, psi, iota, gmst): + p_iota_term = (1.0 + jnp.cos(iota) ** 2) / 2.0 + c_iota_term = jnp.cos(iota) + + antenna_pattern = self.ifo.antenna_pattern(ra, dec, psi, gmst) + p_mode_term = p_iota_term * antenna_pattern["p"] + c_mode_term = c_iota_term * antenna_pattern["c"] + + return jnp.angle(p_mode_term - 1j * c_mode_term) + + def named_transform(x): + R_det_arg = _calc_R_det_arg( + x["ra"], x["dec"], x["psi"], x["iota"], self.gmst + ) + phase_det = R_det_arg + x["phase_c"] / 2.0 + return { + "phase_det": phase_det % (2.0 * jnp.pi), + } + + self.transform_func = named_transform + + def named_inverse_transform(x): + R_det_arg = _calc_R_det_arg( + x["ra"], x["dec"], x["psi"], x["iota"], self.gmst + ) + phase_c = -R_det_arg + x["phase_det"] * 2.0 + return { + "phase_c": phase_c % (2.0 * jnp.pi), + } + + self.inverse_transform_func = named_inverse_transform + + +@jaxtyped(typechecker=typechecker) +class DistanceToSNRWeightedDistanceTransform(ConditionalBijectiveTransform): + """ + Transform the luminosity distance to network SNR weighted distance + + Parameters + ---------- + name_mapping : tuple[list[str], list[str]] + The name mapping between the input and output dictionary. + + """ + + gmst: Float + ifos: list[GroundBased2G] + dL_min: Float + dL_max: Float + + def __init__( + self, + gps_time: Float, + ifos: list[GroundBased2G], + dL_min: Float, + dL_max: Float, + ): + name_mapping = (["d_L"], ["d_hat_unbounded"]) + conditional_names = ["M_c", "ra", "dec", "psi", "iota"] + super().__init__(name_mapping, conditional_names) + + self.gmst = ( + Time(gps_time, format="gps").sidereal_time("apparent", "greenwich").rad + ) + self.ifos = ifos + self.dL_min = dL_min + self.dL_max = dL_max + + assert "d_L" in name_mapping[0] and "d_hat_unbounded" in name_mapping[1] + assert ( + "ra" in conditional_names + and "dec" in conditional_names + and "psi" in conditional_names + and "iota" in conditional_names + and "M_c" in conditional_names + ) + + def _calc_R_dets(ra, dec, psi, iota): + p_iota_term = (1.0 + jnp.cos(iota) ** 2) / 2.0 + c_iota_term = jnp.cos(iota) + R_dets2 = 0.0 + for ifo in self.ifos: + antenna_pattern = ifo.antenna_pattern(ra, dec, psi, self.gmst) + p_mode_term = p_iota_term * antenna_pattern["p"] + c_mode_term = c_iota_term * antenna_pattern["c"] + R_dets2 += p_mode_term**2 + c_mode_term**2 + + return jnp.sqrt(R_dets2) + + def named_transform(x): + d_L, M_c = ( + x["d_L"], + x["M_c"], + ) + R_dets = _calc_R_dets(x["ra"], x["dec"], x["psi"], x["iota"]) + + scale_factor = 1.0 / jnp.power(M_c, 5.0 / 6.0) / R_dets + d_hat = scale_factor * d_L + + d_hat_min = scale_factor * self.dL_min + d_hat_max = scale_factor * self.dL_max + + y = (d_hat - d_hat_min) / (d_hat_max - d_hat_min) + d_hat_unbounded = jnp.log(y / (1.0 - y)) + + return { + "d_hat_unbounded": d_hat_unbounded, + } + + self.transform_func = named_transform + + def named_inverse_transform(x): + d_hat_unbounded, M_c = ( + x["d_hat_unbounded"], + x["M_c"], + ) + R_dets = _calc_R_dets(x["ra"], x["dec"], x["psi"], x["iota"]) + + scale_factor = 1.0 / jnp.power(M_c, 5.0 / 6.0) / R_dets + + d_hat_min = scale_factor * self.dL_min + d_hat_max = scale_factor * self.dL_max + + d_hat = (d_hat_max - d_hat_min) / ( + 1.0 + jnp.exp(-d_hat_unbounded) + ) + d_hat_min + d_L = d_hat / scale_factor + return { + "d_L": d_L, + } + + self.inverse_transform_func = named_inverse_transform + + +def named_m1_m2_to_Mc_q(x): + Mc, q = m1_m2_to_Mc_q(x["m_1"], x["m_2"]) + return {"M_c": Mc, "q": q} + + +def named_Mc_q_to_m1_m2(x): + m1, m2 = Mc_q_to_m1_m2(x["M_c"], x["q"]) + return {"m_1": m1, "m_2": m2} + + +ComponentMassesToChirpMassMassRatioTransform = BijectiveTransform( + (["m_1", "m_2"], ["M_c", "q"]) +) +ComponentMassesToChirpMassMassRatioTransform.transform_func = named_m1_m2_to_Mc_q +ComponentMassesToChirpMassMassRatioTransform.inverse_transform_func = ( + named_Mc_q_to_m1_m2 +) + + +def named_m1_m2_to_Mc_eta(x): + Mc, eta = m1_m2_to_Mc_eta(x["m_1"], x["m_2"]) + return {"M_c": Mc, "eta": eta} + + +def named_Mc_eta_to_m1_m2(x): + m1, m2 = Mc_eta_to_m1_m2(x["M_c"], x["eta"]) + return {"m_1": m1, "m_2": m2} + + +ComponentMassesToChirpMassSymmetricMassRatioTransform = BijectiveTransform( + (["m_1", "m_2"], ["M_c", "eta"]) +) +ComponentMassesToChirpMassSymmetricMassRatioTransform.transform_func = ( + named_m1_m2_to_Mc_eta +) +ComponentMassesToChirpMassSymmetricMassRatioTransform.inverse_transform_func = ( + named_Mc_eta_to_m1_m2 +) + + +def named_q_to_eta(x): + return {"eta": q_to_eta(x["q"])} + + +def named_eta_to_q(x): + return {"q": eta_to_q(x["eta"])} + + +MassRatioToSymmetricMassRatioTransform = BijectiveTransform((["q"], ["eta"])) +MassRatioToSymmetricMassRatioTransform.transform_func = named_q_to_eta +MassRatioToSymmetricMassRatioTransform.inverse_transform_func = named_eta_to_q + + +ChirpMassMassRatioToComponentMassesTransform = reverse_bijective_transform( + ComponentMassesToChirpMassMassRatioTransform +) +ChirpMassSymmetricMassRatioToComponentMassesTransform = reverse_bijective_transform( + ComponentMassesToChirpMassSymmetricMassRatioTransform +) +SymmetricMassRatioToMassRatioTransform = reverse_bijective_transform( + MassRatioToSymmetricMassRatioTransform +) diff --git a/src/jimgw/single_event/utils.py b/src/jimgw/single_event/utils.py index 3f0decce..517b2844 100644 --- a/src/jimgw/single_event/utils.py +++ b/src/jimgw/single_event/utils.py @@ -1,8 +1,9 @@ import jax.numpy as jnp from jax.scipy.integrate import trapezoid -from jax.scipy.special import i0e from jaxtyping import Array, Float +from jimgw.constants import Msun + def inner_product( h1: Float[Array, " n_sample"], @@ -37,7 +38,7 @@ def inner_product( return 4.0 * jnp.real(trapezoid(integrand, dx=df)) -def m1m2_to_Mq(m1: Float, m2: Float): +def m1_m2_to_M_q(m1: Float, m2: Float): """ Transforming the primary mass m1 and secondary mass m2 to the Total mass M and mass ratio q. @@ -56,12 +57,12 @@ def m1m2_to_Mq(m1: Float, m2: Float): q : Float Mass ratio. """ - M_tot = jnp.log(m1 + m2) - q = jnp.log(m2 / m1) - jnp.log(1 - m2 / m1) + M_tot = m1 + m2 + q = m2 / m1 return M_tot, q -def Mq_to_m1m2(trans_M_tot: Float, trans_q: Float): +def M_q_to_m1_m2(M_tot: Float, q: Float): """ Transforming the Total mass M and mass ratio q to the primary mass m1 and secondary mass m2. @@ -80,21 +81,45 @@ def Mq_to_m1m2(trans_M_tot: Float, trans_q: Float): m2 : Float Secondary mass. """ - M_tot = jnp.exp(trans_M_tot) - q = 1.0 / (1 + jnp.exp(-trans_q)) m1 = M_tot / (1 + q) m2 = m1 * q return m1, m2 -def Mc_q_to_m1m2(Mc: Float, q: Float) -> tuple[Float, Float]: +def m1_m2_to_Mc_q(m1: Float, m2: Float) -> tuple[Float, Float]: + """ + Transforming the primary mass m1 and secondary mass m2 to the chirp mass M_c + and mass ratio q. + + Parameters + ---------- + m1 : Float + Primary mass. + m2 : Float + Secondary mass. + + Returns + ------- + M_c : Float + Chirp mass. + q : Float + Mass ratio. + """ + M_tot = m1 + m2 + eta = m1 * m2 / M_tot**2 + M_c = M_tot * eta ** (3.0 / 5) + q = m2 / m1 + return M_c, q + + +def Mc_q_to_m1_m2(M_c: Float, q: Float) -> tuple[Float, Float]: """ - Transforming the chirp mass Mc and mass ratio q to the primary mass m1 and + Transforming the chirp mass M_c and mass ratio q to the primary mass m1 and secondary mass m2. Parameters ---------- - Mc : Float + M_c : Float Chirp mass. q : Float Mass ratio. @@ -107,36 +132,148 @@ def Mc_q_to_m1m2(Mc: Float, q: Float) -> tuple[Float, Float]: Secondary mass. """ eta = q / (1 + q) ** 2 - M_tot = Mc / eta ** (3.0 / 5) + M_tot = M_c / eta ** (3.0 / 5) m1 = M_tot / (1 + q) m2 = m1 * q return m1, m2 -def ra_dec_to_theta_phi(ra: Float, dec: Float, gmst: Float) -> tuple[Float, Float]: +def m1_m2_to_M_eta(m1: Float, m2: Float) -> tuple[Float, Float]: """ - Transforming the right ascension ra and declination dec to the polar angle - theta and azimuthal angle phi. + Transforming the primary mass m1 and secondary mass m2 to the total mass M + and symmetric mass ratio eta. Parameters ---------- - ra : Float - Right ascension. - dec : Float - Declination. - gmst : Float - Greenwich mean sidereal time. + m1 : Float + Primary mass. + m2 : Float + Secondary mass. Returns ------- - theta : Float - Polar angle. - phi : Float - Azimuthal angle. + M : Float + Total mass. + eta : Float + Symmetric mass ratio. """ - phi = ra - gmst - theta = jnp.pi / 2 - dec - return theta, phi + M_tot = m1 + m2 + eta = m1 * m2 / M_tot**2 + return M_tot, eta + + +def M_eta_to_m1_m2(M_tot: Float, eta: Float) -> tuple[Float, Float]: + """ + Transforming the total mass M and symmetric mass ratio eta to the primary mass m1 + and secondary mass m2. + + Parameters + ---------- + M : Float + Total mass. + eta : Float + Symmetric mass ratio. + + Returns + ------- + m1 : Float + Primary mass. + m2 : Float + Secondary mass. + """ + m1 = M_tot * (1 + jnp.sqrt(1 - 4 * eta)) / 2 + m2 = M_tot * (1 - jnp.sqrt(1 - 4 * eta)) / 2 + return m1, m2 + + +def m1_m2_to_Mc_eta(m1: Float, m2: Float) -> tuple[Float, Float]: + """ + Transforming the primary mass m1 and secondary mass m2 to the chirp mass M_c + and symmetric mass ratio eta. + + Parameters + ---------- + m1 : Float + Primary mass. + m2 : Float + Secondary mass. + + Returns + ------- + M_c : Float + Chirp mass. + eta : Float + Symmetric mass ratio. + """ + M = m1 + m2 + eta = m1 * m2 / M**2 + M_c = M * eta ** (3.0 / 5) + return M_c, eta + + +def Mc_eta_to_m1_m2(M_c: Float, eta: Float) -> tuple[Float, Float]: + """ + Transforming the chirp mass M_c and symmetric mass ratio eta to the primary mass m1 + and secondary mass m2. + + Parameters + ---------- + M_c : Float + Chirp mass. + eta : Float + Symmetric mass ratio. + + Returns + ------- + m1 : Float + Primary mass. + m2 : Float + Secondary mass. + """ + M = M_c / eta ** (3.0 / 5) + m1 = M * (1 + jnp.sqrt(1 - 4 * eta)) / 2 + m2 = M * (1 - jnp.sqrt(1 - 4 * eta)) / 2 + return m1, m2 + + +def q_to_eta(q: Float) -> Float: + """ + Transforming the chirp mass M_c and mass ratio q to the symmetric mass ratio eta. + + Parameters + ---------- + M_c : Float + Chirp mass. + q : Float + Mass ratio. + + Returns + ------- + eta : Float + Symmetric mass ratio. + """ + eta = q / (1 + q) ** 2 + return eta + + +def eta_to_q(eta: Float) -> Float: + """ + Transforming the symmetric mass ratio eta to the mass ratio q. + + Copied and modified from bilby/gw/conversion.py + + Parameters + ---------- + eta : Float + Symmetric mass ratio. + + Returns + ------- + q : Float + Mass ratio. + """ + temp = 1 / eta / 2 - 1 + return temp - (temp**2 - 1) ** 0.5 def euler_rotation(delta_x: Float[Array, " 3"]): @@ -149,11 +286,10 @@ def euler_rotation(delta_x: Float[Array, " 3"]): Copied and modified from bilby-cython/geometry.pyx """ - norm = jnp.power( - delta_x[0] * delta_x[0] + delta_x[1] * delta_x[1] + delta_x[2] * delta_x[2], 0.5 - ) + norm = jnp.linalg.vector_norm(delta_x) + cos_beta = delta_x[2] / norm - sin_beta = jnp.power(1 - cos_beta**2, 0.5) + sin_beta = jnp.sqrt(1 - cos_beta**2) alpha = jnp.atan2(-delta_x[1] * cos_beta, delta_x[0]) gamma = jnp.atan2(delta_x[1], delta_x[0]) @@ -182,8 +318,8 @@ def euler_rotation(delta_x: Float[Array, " 3"]): return rotation -def zenith_azimuth_to_theta_phi( - zenith: Float, azimuth: Float, delta_x: Float[Array, " 3"] +def angle_rotation( + zenith: Float, azimuth: Float, rotation: Float[Array, " 3 3"] ) -> tuple[Float, Float]: """ Transforming the azimuthal angle and zenith angle in Earth frame to the polar angle and azimuthal angle in sky frame. @@ -196,8 +332,8 @@ def zenith_azimuth_to_theta_phi( Zenith angle. azimuth : Float Azimuthal angle. - delta_x : Float - The vector pointing from the first detector to the second detector. + rotation : Float[Array, " 3 3"] + The rotation matrix. Returns ------- @@ -211,8 +347,6 @@ def zenith_azimuth_to_theta_phi( sin_zenith = jnp.sin(zenith) cos_zenith = jnp.cos(zenith) - rotation = euler_rotation(delta_x) - theta = jnp.acos( rotation[2][0] * sin_zenith * cos_azimuth + rotation[2][1] * sin_zenith * sin_azimuth @@ -228,7 +362,7 @@ def zenith_azimuth_to_theta_phi( + rotation[0][2] * cos_zenith, ) + 2 * jnp.pi, - (2 * jnp.pi), + 2 * jnp.pi, ) return theta, phi @@ -255,11 +389,170 @@ def theta_phi_to_ra_dec(theta: Float, phi: Float, gmst: Float) -> tuple[Float, F """ ra = phi + gmst dec = jnp.pi / 2 - theta + ra = ra % (2 * jnp.pi) return ra, dec +def spin_to_cartesian_spin( + thetaJN: Float, + phiJL: Float, + tilt1: Float, + tilt2: Float, + phi12: Float, + chi1: Float, + chi2: Float, + M_c: Float, + q: Float, + fRef: Float, + phiRef: Float, +) -> tuple[Float, Float, Float, Float, Float, Float, Float]: + """ + Transforming the spin parameters + + The code is based on the approach used in LALsimulation: + https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group__lalsimulation__inference.html + + Parameters: + ------- + thetaJN: Float + Zenith angle between the total angular momentum and the line of sight + phiJL: Float + Difference between total and orbital angular momentum azimuthal angles + tilt1: Float + Zenith angle between the spin and orbital angular momenta for the primary object + tilt2: Float + Zenith angle between the spin and orbital angular momenta for the secondary object + phi12: Float + Difference between the azimuthal angles of the individual spin vector projections + onto the orbital plane + chi1: Float + Primary object aligned spin: + chi2: Float + Secondary object aligned spin: + M_c: Float + The chirp mass + eta: Float + The symmetric mass ratio + fRef: Float + The reference frequency + phiRef: Float + Binary phase at a reference frequency + + Returns: + ------- + iota: Float + Zenith angle between the orbital angular momentum and the line of sight + S1x: Float + The x-component of the primary spin + S1y: Float + The y-component of the primary spin + S1z: Float + The z-component of the primary spin + S2x: Float + The x-component of the secondary spin + S2y: Float + The y-component of the secondary spin + S2z: Float + The z-component of the secondary spin + """ + + def rotate_y(angle, vec): + """ + Rotate the vector (x, y, z) about y-axis + """ + cos_angle = jnp.cos(angle) + sin_angle = jnp.sin(angle) + rotation_matrix = jnp.array( + [[cos_angle, 0, sin_angle], [0, 1, 0], [-sin_angle, 0, cos_angle]] + ) + rotated_vec = jnp.dot(rotation_matrix, vec) + return rotated_vec + + def rotate_z(angle, vec): + """ + Rotate the vector (x, y, z) about z-axis + """ + cos_angle = jnp.cos(angle) + sin_angle = jnp.sin(angle) + rotation_matrix = jnp.array( + [[cos_angle, -sin_angle, 0], [sin_angle, cos_angle, 0], [0, 0, 1]] + ) + rotated_vec = jnp.dot(rotation_matrix, vec) + return rotated_vec + + LNh = jnp.array([0.0, 0.0, 1.0]) + + s1hat = jnp.array( + [ + jnp.sin(tilt1) * jnp.cos(phiRef), + jnp.sin(tilt1) * jnp.sin(phiRef), + jnp.cos(tilt1), + ] + ) + s2hat = jnp.array( + [ + jnp.sin(tilt2) * jnp.cos(phi12 + phiRef), + jnp.sin(tilt2) * jnp.sin(phi12 + phiRef), + jnp.cos(tilt2), + ] + ) + + m1, m2 = Mc_q_to_m1_m2(M_c, q) + eta = q / (1 + q) ** 2 + v0 = jnp.cbrt((m1 + m2) * Msun * jnp.pi * fRef) + + Lmag = ((m1 + m2) * (m1 + m2) * eta / v0) * (1.0 + v0 * v0 * (1.5 + eta / 6.0)) + s1 = m1 * m1 * chi1 * s1hat + s2 = m2 * m2 * chi2 * s2hat + J = s1 + s2 + jnp.array([0.0, 0.0, Lmag]) + + Jhat = J / jnp.linalg.norm(J) + theta0 = jnp.arccos(Jhat[2]) + phi0 = jnp.arctan2(Jhat[1], Jhat[0]) + + # Rotation 1: + s1hat = rotate_z(-phi0, s1hat) + s2hat = rotate_z(-phi0, s2hat) + + # Rotation 2: + LNh = rotate_y(-theta0, LNh) + s1hat = rotate_y(-theta0, s1hat) + s2hat = rotate_y(-theta0, s2hat) + + # Rotation 3: + LNh = rotate_z(phiJL - jnp.pi, LNh) + s1hat = rotate_z(phiJL - jnp.pi, s1hat) + s2hat = rotate_z(phiJL - jnp.pi, s2hat) + + # Compute iota + N = jnp.array([0.0, jnp.sin(thetaJN), jnp.cos(thetaJN)]) + iota = jnp.arccos(jnp.dot(N, LNh)) + + thetaLJ = jnp.arccos(LNh[2]) + phiL = jnp.arctan2(LNh[1], LNh[0]) + + # Rotation 4: + s1hat = rotate_z(-phiL, s1hat) + s2hat = rotate_z(-phiL, s2hat) + N = rotate_z(-phiL, N) + + # Rotation 5: + s1hat = rotate_y(-thetaLJ, s1hat) + s2hat = rotate_y(-thetaLJ, s2hat) + N = rotate_y(-thetaLJ, N) + + # Rotation 6: + phiN = jnp.arctan2(N[1], N[0]) + s1hat = rotate_z(jnp.pi / 2.0 - phiN - phiRef, s1hat) + s2hat = rotate_z(jnp.pi / 2.0 - phiN - phiRef, s2hat) + + S1 = s1hat * chi1 + S2 = s2hat * chi2 + return iota, S1[0], S1[1], S1[2], S2[0], S2[1], S2[2] + + def zenith_azimuth_to_ra_dec( - zenith: Float, azimuth: Float, gmst: Float, delta_x: Float[Array, " 3"] + zenith: Float, azimuth: Float, gmst: Float, rotation: Float[Array, " 3 3"] ) -> tuple[Float, Float]: """ Transforming the azimuthal angle and zenith angle in Earth frame to right ascension and declination. @@ -272,8 +565,8 @@ def zenith_azimuth_to_ra_dec( Azimuthal angle. gmst : Float Greenwich mean sidereal time. - delta_x : Float - The vector pointing from the first detector to the second detector. + rotation : Float[Array, " 3 3"] + The rotation matrix. Copied and modified from bilby/gw/utils.py @@ -284,26 +577,62 @@ def zenith_azimuth_to_ra_dec( dec : Float Declination. """ - theta, phi = zenith_azimuth_to_theta_phi(zenith, azimuth, delta_x) + theta, phi = angle_rotation(zenith, azimuth, rotation) ra, dec = theta_phi_to_ra_dec(theta, phi, gmst) - ra = ra % (2 * jnp.pi) return ra, dec -def log_i0(x: Float[Array, " n"]) -> Float[Array, " n"]: +def ra_dec_to_theta_phi(ra: Float, dec: Float, gmst: Float) -> tuple[Float, Float]: """ - A numerically stable method to evaluate log of - a modified Bessel function of order 0. - It is used in the phase-marginalized likelihood. + Transforming the right ascension ra and declination dec to the polar angle + theta and azimuthal angle phi. Parameters - ========== - x: array-like - Value(s) at which to evaluate the function + ---------- + ra : Float + Right ascension. + dec : Float + Declination. + gmst : Float + Greenwich mean sidereal time. Returns - ======= - array-like: - The natural logarithm of the bessel function + ------- + theta : Float + Polar angle. + phi : Float + Azimuthal angle. + """ + phi = ra - gmst + theta = jnp.pi / 2 - dec + phi = (phi + 2 * jnp.pi) % (2 * jnp.pi) + return theta, phi + + +def ra_dec_to_zenith_azimuth( + ra: Float, dec: Float, gmst: Float, rotation: Float[Array, " 3 3"] +) -> tuple[Float, Float]: + """ + Transforming the right ascension and declination to the zenith angle and azimuthal angle. + + Parameters + ---------- + ra : Float + Right ascension. + dec : Float + Declination. + gmst : Float + Greenwich mean sidereal time. + rotation : Float[Array, " 3 3"] + The rotation matrix. + + Returns + ------- + zenith : Float + Zenith angle. + azimuth : Float + Azimuthal angle. """ - return jnp.log(i0e(x)) + x + theta, phi = ra_dec_to_theta_phi(ra, dec, gmst) + zenith, azimuth = angle_rotation(theta, phi, rotation) + return zenith, azimuth diff --git a/src/jimgw/transforms.py b/src/jimgw/transforms.py new file mode 100644 index 00000000..39c55642 --- /dev/null +++ b/src/jimgw/transforms.py @@ -0,0 +1,534 @@ +from abc import ABC +from typing import Callable + +import jax +import jax.numpy as jnp +from beartype import beartype as typechecker +from jaxtyping import Float, Array, jaxtyped + + +class Transform(ABC): + """ + Base class for transform. + The purpose of this class is purely for keeping name + """ + + name_mapping: tuple[list[str], list[str]] + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + ): + self.name_mapping = name_mapping + + def propagate_name(self, x: list[str]) -> list[str]: + input_set = set(x) + from_set = set(self.name_mapping[0]) + to_set = set(self.name_mapping[1]) + return list(input_set - from_set | to_set) + + +class NtoMTransform(Transform): + + transform_func: Callable[[dict[str, Float]], dict[str, Float]] + + def forward(self, x: dict[str, Float]) -> dict[str, Float]: + """ + Push forward the input x to transformed coordinate y. + + Parameters + ---------- + x : dict[str, Float] + The input dictionary. + + Returns + ------- + y : dict[str, Float] + The transformed dictionary. + """ + x_copy = x.copy() + output_params = self.transform_func(x_copy) + jax.tree.map( + lambda key: x_copy.pop(key), + self.name_mapping[0], + ) + jax.tree.map( + lambda key: x_copy.update({key: output_params[key]}), + list(output_params.keys()), + ) + return x_copy + + +class NtoNTransform(NtoMTransform): + + @property + def n_dim(self) -> int: + return len(self.name_mapping[0]) + + def transform(self, x: dict[str, Float]) -> tuple[dict[str, Float], Float]: + """ + Transform the input x to transformed coordinate y and return the log Jacobian determinant. + This only works if the transform is a N -> N transform. + + Parameters + ---------- + x : dict[str, Float] + The input dictionary. + + Returns + ------- + y : dict[str, Float] + The transformed dictionary. + log_det : Float + The log Jacobian determinant. + """ + x_copy = x.copy() + transform_params = dict((key, x_copy[key]) for key in self.name_mapping[0]) + output_params = self.transform_func(transform_params) + jacobian = jax.jacfwd(self.transform_func)(transform_params) + jacobian = jnp.array(jax.tree.leaves(jacobian)) + jacobian = jnp.log(jnp.absolute(jnp.linalg.det(jacobian.reshape(self.n_dim, self.n_dim)))) + jax.tree.map( + lambda key: x_copy.pop(key), + self.name_mapping[0], + ) + jax.tree.map( + lambda key: x_copy.update({key: output_params[key]}), + list(output_params.keys()), + ) + return x_copy, jacobian + + +class BijectiveTransform(NtoNTransform): + + inverse_transform_func: Callable[[dict[str, Float]], dict[str, Float]] + + def inverse(self, y: dict[str, Float]) -> tuple[dict[str, Float], Float]: + """ + Inverse transform the input y to original coordinate x. + + Parameters + ---------- + y : dict[str, Float] + The transformed dictionary. + + Returns + ------- + x : dict[str, Float] + The original dictionary. + log_det : Float + The log Jacobian determinant. + """ + y_copy = y.copy() + transform_params = dict((key, y_copy[key]) for key in self.name_mapping[1]) + output_params = self.inverse_transform_func(transform_params) + jacobian = jax.jacfwd(self.inverse_transform_func)(transform_params) + jacobian = jnp.array(jax.tree.leaves(jacobian)) + jacobian = jnp.log(jnp.absolute(jnp.linalg.det(jacobian.reshape(self.n_dim, self.n_dim)))) + jax.tree.map( + lambda key: y_copy.pop(key), + self.name_mapping[1], + ) + jax.tree.map( + lambda key: y_copy.update({key: output_params[key]}), + list(output_params.keys()), + ) + return y_copy, jacobian + + def backward(self, y: dict[str, Float]) -> dict[str, Float]: + """ + Pull back the input y to original coordinate x and return the log Jacobian determinant. + + Parameters + ---------- + y : dict[str, Float] + The transformed dictionary. + + Returns + ------- + x : dict[str, Float] + The original dictionary. + """ + y_copy = y.copy() + output_params = self.inverse_transform_func(y_copy) + jax.tree.map( + lambda key: y_copy.pop(key), + self.name_mapping[1], + ) + jax.tree.map( + lambda key: y_copy.update({key: output_params[key]}), + list(output_params.keys()), + ) + return y_copy + + +class ConditionalBijectiveTransform(BijectiveTransform): + + conditional_names: list[str] + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + conditional_names: list[str], + ): + super().__init__(name_mapping) + self.conditional_names = conditional_names + + def transform(self, x: dict[str, Float]) -> tuple[dict[str, Float], Float]: + x_copy = x.copy() + transform_params = dict((key, x_copy[key]) for key in self.name_mapping[0]) + transform_params.update( + dict((key, x_copy[key]) for key in self.conditional_names) + ) + output_params = self.transform_func(transform_params) + jacobian = jax.jacfwd(self.transform_func)(transform_params) + jacobian_copy = { + key1: {key2: jacobian[key1][key2] for key2 in self.name_mapping[0]} + for key1 in self.name_mapping[1] + } + jacobian = jnp.array(jax.tree.leaves(jacobian_copy)) + jacobian = jnp.log( + jnp.absolute(jnp.linalg.det(jacobian.reshape(self.n_dim, self.n_dim))) + ) + jax.tree.map( + lambda key: x_copy.pop(key), + self.name_mapping[0], + ) + jax.tree.map( + lambda key: x_copy.update({key: output_params[key]}), + list(output_params.keys()), + ) + return x_copy, jacobian + + def inverse(self, y: dict[str, Float]) -> tuple[dict[str, Float], Float]: + y_copy = y.copy() + transform_params = dict((key, y_copy[key]) for key in self.name_mapping[1]) + transform_params.update( + dict((key, y_copy[key]) for key in self.conditional_names) + ) + output_params = self.inverse_transform_func(transform_params) + jacobian = jax.jacfwd(self.inverse_transform_func)(transform_params) + jacobian_copy = { + key1: {key2: jacobian[key1][key2] for key2 in self.name_mapping[1]} + for key1 in self.name_mapping[0] + } + jacobian = jnp.array(jax.tree.leaves(jacobian_copy)) + jacobian = jnp.log( + jnp.absolute(jnp.linalg.det(jacobian.reshape(self.n_dim, self.n_dim))) + ) + jax.tree.map( + lambda key: y_copy.pop(key), + self.name_mapping[1], + ) + jax.tree.map( + lambda key: y_copy.update({key: output_params[key]}), + list(output_params.keys()), + ) + return y_copy, jacobian + + +@jaxtyped(typechecker=typechecker) +class ScaleTransform(BijectiveTransform): + scale: Float + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + scale: Float, + ): + super().__init__(name_mapping) + self.scale = scale + self.transform_func = lambda x: { + name_mapping[1][i]: x[name_mapping[0][i]] * self.scale + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: x[name_mapping[1][i]] / self.scale + for i in range(len(name_mapping[1])) + } + + +@jaxtyped(typechecker=typechecker) +class OffsetTransform(BijectiveTransform): + offset: Float + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + offset: Float, + ): + super().__init__(name_mapping) + self.offset = offset + self.transform_func = lambda x: { + name_mapping[1][i]: x[name_mapping[0][i]] + self.offset + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: x[name_mapping[1][i]] - self.offset + for i in range(len(name_mapping[1])) + } + + +@jaxtyped(typechecker=typechecker) +class LogitTransform(BijectiveTransform): + """ + Logit transform following + + Parameters + ---------- + name_mapping : tuple[list[str], list[str]] + The name mapping between the input and output dictionary. + + """ + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + ): + super().__init__(name_mapping) + self.transform_func = lambda x: { + name_mapping[1][i]: 1 / (1 + jnp.exp(-x[name_mapping[0][i]])) + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: jnp.log( + x[name_mapping[1][i]] / (1 - x[name_mapping[1][i]]) + ) + for i in range(len(name_mapping[1])) + } + + +@jaxtyped(typechecker=typechecker) +class ArcSineTransform(BijectiveTransform): + """ + ArcSine transformation + + Parameters + ---------- + name_mapping : tuple[list[str], list[str]] + The name mapping between the input and output dictionary. + + """ + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + ): + super().__init__(name_mapping) + self.transform_func = lambda x: { + name_mapping[1][i]: jnp.arcsin(x[name_mapping[0][i]]) + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: jnp.sin(x[name_mapping[1][i]]) + for i in range(len(name_mapping[1])) + } + + +@jaxtyped(typechecker=typechecker) +class BoundToBound(BijectiveTransform): + """ + Bound to bound transformation + """ + + original_lower_bound: Float[Array, " n_dim"] + original_upper_bound: Float[Array, " n_dim"] + target_lower_bound: Float[Array, " n_dim"] + target_upper_bound: Float[Array, " n_dim"] + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + original_lower_bound: Float[Array, " n_dim"], + original_upper_bound: Float[Array, " n_dim"], + target_lower_bound: Float[Array, " n_dim"], + target_upper_bound: Float[Array, " n_dim"], + ): + super().__init__(name_mapping) + self.original_lower_bound = original_lower_bound + self.original_upper_bound = original_upper_bound + self.target_lower_bound = target_lower_bound + self.target_upper_bound = target_upper_bound + + self.transform_func = lambda x: { + name_mapping[1][i]: (x[name_mapping[0][i]] - self.original_lower_bound[i]) + * (self.target_upper_bound[i] - self.target_lower_bound[i]) + / (self.original_upper_bound[i] - self.original_lower_bound[i]) + + self.target_lower_bound[i] + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: (x[name_mapping[1][i]] - self.target_lower_bound[i]) + * (self.original_upper_bound[i] - self.original_lower_bound[i]) + / (self.target_upper_bound[i] - self.target_lower_bound[i]) + + self.original_lower_bound[i] + for i in range(len(name_mapping[1])) + } + + +@jaxtyped(typechecker=typechecker) +class BoundToUnbound(BijectiveTransform): + """ + Bound to unbound transformation + """ + + original_lower_bound: Float + original_upper_bound: Float + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + original_lower_bound: Float, + original_upper_bound: Float, + ): + + def logit(x): + return jnp.log(x / (1 - x)) + + super().__init__(name_mapping) + self.original_lower_bound = jnp.atleast_1d(original_lower_bound) + self.original_upper_bound = jnp.atleast_1d(original_upper_bound) + + self.transform_func = lambda x: { + name_mapping[1][i]: logit( + (x[name_mapping[0][i]] - self.original_lower_bound[i]) + / (self.original_upper_bound[i] - self.original_lower_bound[i]) + ) + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: ( + self.original_upper_bound[i] - self.original_lower_bound[i] + ) + / (1 + jnp.exp(-x[name_mapping[1][i]])) + + self.original_lower_bound[i] + for i in range(len(name_mapping[1])) + } + + +@jaxtyped(typechecker=typechecker) +class SingleSidedUnboundTransform(BijectiveTransform): + """ + Unbound upper limit transformation + + Parameters + ---------- + name_mapping : tuple[list[str], list[str]] + The name mapping between the input and output dictionary. + + """ + + original_lower_bound: Float + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + original_lower_bound: Float, + ): + super().__init__(name_mapping) + self.original_lower_bound = jnp.atleast_1d(original_lower_bound) + + self.transform_func = lambda x: { + name_mapping[1][i]: jnp.log( + x[name_mapping[0][i]] - self.original_lower_bound[i] + ) + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: jnp.exp(x[name_mapping[1][i]]) + + self.original_lower_bound[i] + for i in range(len(name_mapping[1])) + } + + +class PowerLawTransform(BijectiveTransform): + """ + PowerLaw transformation + Parameters + ---------- + name_mapping : tuple[list[str], list[str]] + The name mapping between the input and output dictionary. + """ + + xmin: Float + xmax: Float + alpha: Float + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + xmin: Float, + xmax: Float, + alpha: Float, + ): + super().__init__(name_mapping) + self.xmin = xmin + self.xmax = xmax + self.alpha = alpha + self.transform_func = lambda x: { + name_mapping[1][i]: ( + self.xmin ** (1.0 + self.alpha) + + x[name_mapping[0][i]] + * (self.xmax ** (1.0 + self.alpha) - self.xmin ** (1.0 + self.alpha)) + ) + ** (1.0 / (1.0 + self.alpha)) + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: ( + ( + x[name_mapping[1][i]] ** (1.0 + self.alpha) + - self.xmin ** (1.0 + self.alpha) + ) + / (self.xmax ** (1.0 + self.alpha) - self.xmin ** (1.0 + self.alpha)) + ) + for i in range(len(name_mapping[1])) + } + + +class ParetoTransform(BijectiveTransform): + """ + Pareto transformation: Power law when alpha = -1 + Parameters + ---------- + name_mapping : tuple[list[str], list[str]] + The name mapping between the input and output dictionary. + """ + + def __init__( + self, + name_mapping: tuple[list[str], list[str]], + xmin: Float, + xmax: Float, + ): + super().__init__(name_mapping) + self.xmin = xmin + self.xmax = xmax + self.transform_func = lambda x: { + name_mapping[1][i]: self.xmin + * jnp.exp(x[name_mapping[0][i]] * jnp.log(self.xmax / self.xmin)) + for i in range(len(name_mapping[0])) + } + self.inverse_transform_func = lambda x: { + name_mapping[0][i]: ( + jnp.log(x[name_mapping[1][i]] / self.xmin) + / jnp.log(self.xmax / self.xmin) + ) + for i in range(len(name_mapping[1])) + } + + +def reverse_bijective_transform( + original_transform: BijectiveTransform, +) -> BijectiveTransform: + + reversed_name_mapping = ( + original_transform.name_mapping[1], + original_transform.name_mapping[0], + ) + reversed_transform = BijectiveTransform(name_mapping=reversed_name_mapping) + reversed_transform.transform_func = original_transform.inverse_transform_func + reversed_transform.inverse_transform_func = original_transform.transform_func + reversed_transform.__repr__ = lambda: f"Reversed{repr(original_transform)}" + + return reversed_transform diff --git a/src/jimgw/utils.py b/src/jimgw/utils.py new file mode 100644 index 00000000..70c6e166 --- /dev/null +++ b/src/jimgw/utils.py @@ -0,0 +1,37 @@ +import jax.numpy as jnp +from jax.scipy.special import i0e +from jaxtyping import Array, Float + +from jimgw.prior import Prior + + +def trace_prior_parent(prior: Prior, output: list[Prior] = []) -> list[Prior]: + if prior.composite: + if isinstance(prior.base_prior, list): + for subprior in prior.base_prior: + output = trace_prior_parent(subprior, output) + elif isinstance(prior.base_prior, Prior): + output = trace_prior_parent(prior.base_prior, output) + else: + output.append(prior) + + return output + + +def log_i0(x: Float[Array, " n"]) -> Float[Array, " n"]: + """ + A numerically stable method to evaluate log of + a modified Bessel function of order 0. + It is used in the phase-marginalized likelihood. + + Parameters + ========== + x: array-like + Value(s) at which to evaluate the function + + Returns + ======= + array-like: + The natural logarithm of the bessel function + """ + return jnp.log(i0e(x)) + x diff --git a/test/integration/.gitignore b/test/integration/.gitignore new file mode 100644 index 00000000..a7f7ef0e --- /dev/null +++ b/test/integration/.gitignore @@ -0,0 +1,2 @@ +outdir/ +figures/ diff --git a/test/integration/test_GW150914_D.py b/test/integration/test_GW150914_D.py new file mode 100644 index 00000000..946b0735 --- /dev/null +++ b/test/integration/test_GW150914_D.py @@ -0,0 +1,134 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "0" +os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.10" + +import jax +import jax.numpy as jnp + +from jimgw.jim import Jim +from jimgw.prior import CombinePrior, UniformPrior, CosinePrior, SinePrior, PowerLawPrior +from jimgw.single_event.detector import H1, L1 +from jimgw.single_event.likelihood import TransientLikelihoodFD +from jimgw.single_event.waveform import RippleIMRPhenomD +from jimgw.transforms import BoundToUnbound +from jimgw.single_event.transforms import ComponentMassesToChirpMassSymmetricMassRatioTransform, SkyFrameToDetectorFrameSkyPositionTransform, ComponentMassesToChirpMassMassRatioTransform +from jimgw.single_event.utils import Mc_q_to_m1_m2 +from flowMC.strategy.optimization import optimization_Adam +from flowMC.utils.postprocessing import plot_summary +import optax + +jax.config.update("jax_enable_x64", True) + +########################################### +########## First we grab data ############# +########################################### + +# first, fetch a 4s segment centered on GW150914 +gps = 1126259462.4 +duration = 4 +post_trigger_duration = 2 +start_pad = duration - post_trigger_duration +end_pad = post_trigger_duration +fmin = 20.0 +fmax = 1024.0 + +ifos = [H1, L1] + +for ifo in ifos: + ifo.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) + +M_c_min, M_c_max = 10.0, 80.0 +q_min, q_max = 0.125, 1.0 +m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"]) +m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"]) +s1z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"]) +s2z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"]) +dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"]) +t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"]) +phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) +iota_prior = SinePrior(parameter_names=["iota"]) +psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) +ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) +dec_prior = CosinePrior(parameter_names=["dec"]) + +prior = CombinePrior( + [ + m_1_prior, + m_2_prior, + s1z_prior, + s2z_prior, + dL_prior, + t_c_prior, + phase_c_prior, + iota_prior, + psi_prior, + ra_prior, + dec_prior, + ] +) + +sample_transforms = [ + ComponentMassesToChirpMassMassRatioTransform, + BoundToUnbound(name_mapping = [["M_c"], ["M_c_unbounded"]], original_lower_bound=M_c_min, original_upper_bound=M_c_max), + BoundToUnbound(name_mapping = [["q"], ["q_unbounded"]], original_lower_bound=q_min, original_upper_bound=q_max), + BoundToUnbound(name_mapping = [["s1_z"], ["s1_z_unbounded"]] , original_lower_bound=-1.0, original_upper_bound=1.0), + BoundToUnbound(name_mapping = [["s2_z"], ["s2_z_unbounded"]] , original_lower_bound=-1.0, original_upper_bound=1.0), + BoundToUnbound(name_mapping = [["d_L"], ["d_L_unbounded"]] , original_lower_bound=0.0, original_upper_bound=2000.0), + BoundToUnbound(name_mapping = [["t_c"], ["t_c_unbounded"]] , original_lower_bound=-0.05, original_upper_bound=0.05), + BoundToUnbound(name_mapping = [["phase_c"], ["phase_c_unbounded"]] , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = [["iota"], ["iota_unbounded"]], original_lower_bound=0., original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = [["psi"], ["psi_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi), + SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), + BoundToUnbound(name_mapping = [["zenith"], ["zenith_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = [["azimuth"], ["azimuth_unbounded"]], original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), +] + +likelihood_transforms = [ + ComponentMassesToChirpMassSymmetricMassRatioTransform, +] + +likelihood = TransientLikelihoodFD( + ifos, + waveform=RippleIMRPhenomD(), + trigger_time=gps, + duration=4, + post_trigger_duration=2, +) + +mass_matrix = jnp.eye(11) +mass_matrix = mass_matrix.at[1, 1].set(1e-3) +mass_matrix = mass_matrix.at[5, 5].set(1e-3) +local_sampler_arg = {"step_size": mass_matrix * 3e-3} + +Adam_optimizer = optimization_Adam(n_steps=5, learning_rate=0.01, noise_level=1) + +n_epochs = 2 +n_loop_training = 1 +learning_rate = 1e-4 + +jim = Jim( + likelihood, + prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_loop_training=n_loop_training, + n_loop_production=1, + n_local_steps=5, + n_global_steps=5, + n_chains=4, + n_epochs=n_epochs, + learning_rate=learning_rate, + n_max_examples=30, + n_flow_sample=100, + momentum=0.9, + batch_size=100, + use_global=True, + train_thinning=1, + output_thinning=1, + local_sampler_arg=local_sampler_arg, + strategies=[Adam_optimizer, "default"], +) + +jim.sample(jax.random.PRNGKey(42)) +jim.get_samples() +jim.print_summary() \ No newline at end of file diff --git a/test/integration/test_GW150914_D_heterodyne.py b/test/integration/test_GW150914_D_heterodyne.py new file mode 100644 index 00000000..cbac1788 --- /dev/null +++ b/test/integration/test_GW150914_D_heterodyne.py @@ -0,0 +1,135 @@ +import jax +import jax.numpy as jnp + +from jimgw.jim import Jim +from jimgw.prior import CombinePrior, UniformPrior, CosinePrior, SinePrior, PowerLawPrior +from jimgw.single_event.detector import H1, L1 +from jimgw.single_event.likelihood import HeterodynedTransientLikelihoodFD +from jimgw.single_event.waveform import RippleIMRPhenomD +from jimgw.transforms import BoundToUnbound +from jimgw.single_event.transforms import ComponentMassesToChirpMassSymmetricMassRatioTransform, SkyFrameToDetectorFrameSkyPositionTransform, ComponentMassesToChirpMassMassRatioTransform +from jimgw.single_event.utils import Mc_q_to_m1_m2 +from flowMC.strategy.optimization import optimization_Adam + +jax.config.update("jax_enable_x64", True) + +########################################### +########## First we grab data ############# +########################################### + +# first, fetch a 4s segment centered on GW150914 +gps = 1126259462.4 +duration = 4 +post_trigger_duration = 2 +start_pad = duration - post_trigger_duration +end_pad = post_trigger_duration +fmin = 20.0 +fmax = 1024.0 + +ifos = [H1, L1] + +for ifo in ifos: + ifo.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) + +M_c_min, M_c_max = 10.0, 80.0 +q_min, q_max = 0.125, 1.0 +m_1_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_max)[0], Mc_q_to_m1_m2(M_c_max, q_min)[0], parameter_names=["m_1"]) +m_2_prior = UniformPrior(Mc_q_to_m1_m2(M_c_min, q_min)[1], Mc_q_to_m1_m2(M_c_max, q_max)[1], parameter_names=["m_2"]) +s1z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s1_z"]) +s2z_prior = UniformPrior(-1.0, 1.0, parameter_names=["s2_z"]) +dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"]) +t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"]) +phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) +iota_prior = SinePrior(parameter_names=["iota"]) +psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) +ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) +dec_prior = CosinePrior(parameter_names=["dec"]) + +prior = CombinePrior( + [ + m_1_prior, + m_2_prior, + s1z_prior, + s2z_prior, + dL_prior, + t_c_prior, + phase_c_prior, + iota_prior, + psi_prior, + ra_prior, + dec_prior, + ] +) + +sample_transforms = [ + ComponentMassesToChirpMassMassRatioTransform, + BoundToUnbound(name_mapping = [["M_c"], ["M_c_unbounded"]], original_lower_bound=M_c_min, original_upper_bound=M_c_max), + BoundToUnbound(name_mapping = [["q"], ["q_unbounded"]], original_lower_bound=q_min, original_upper_bound=q_max), + BoundToUnbound(name_mapping = [["s1_z"], ["s1_z_unbounded"]] , original_lower_bound=-1.0, original_upper_bound=1.0), + BoundToUnbound(name_mapping = [["s2_z"], ["s2_z_unbounded"]] , original_lower_bound=-1.0, original_upper_bound=1.0), + BoundToUnbound(name_mapping = [["d_L"], ["d_L_unbounded"]] , original_lower_bound=0.0, original_upper_bound=2000.0), + BoundToUnbound(name_mapping = [["t_c"], ["t_c_unbounded"]] , original_lower_bound=-0.05, original_upper_bound=0.05), + BoundToUnbound(name_mapping = [["phase_c"], ["phase_c_unbounded"]] , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = [["iota"], ["iota_unbounded"]], original_lower_bound=0., original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = [["psi"], ["psi_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi), + SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), + BoundToUnbound(name_mapping = [["zenith"], ["zenith_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = [["azimuth"], ["azimuth_unbounded"]], original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), +] + +likelihood_transforms = [ + ComponentMassesToChirpMassSymmetricMassRatioTransform, +] + +likelihood = HeterodynedTransientLikelihoodFD( + ifos, + prior=prior, + waveform=RippleIMRPhenomD(), + trigger_time=gps, + duration=4, + post_trigger_duration=2, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_steps=5, + popsize=10, +) + + +mass_matrix = jnp.eye(11) +mass_matrix = mass_matrix.at[1, 1].set(1e-3) +mass_matrix = mass_matrix.at[5, 5].set(1e-3) +local_sampler_arg = {"step_size": mass_matrix * 3e-3} + +Adam_optimizer = optimization_Adam(n_steps=5, learning_rate=0.01, noise_level=1) + +n_epochs = 2 +n_loop_training = 1 +learning_rate = 1e-4 + + +jim = Jim( + likelihood, + prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_loop_training=n_loop_training, + n_loop_production=1, + n_local_steps=5, + n_global_steps=5, + n_chains=4, + n_epochs=n_epochs, + learning_rate=learning_rate, + n_max_examples=30, + n_flow_samples=100, + momentum=0.9, + batch_size=100, + use_global=True, + train_thinning=1, + output_thinning=1, + local_sampler_arg=local_sampler_arg, + strategies=[Adam_optimizer, "default"], +) + +jim.sample(jax.random.PRNGKey(42)) +jim.get_samples() +jim.print_summary() \ No newline at end of file diff --git a/test/integration/test_GW150914_Pv2.py b/test/integration/test_GW150914_Pv2.py new file mode 100644 index 00000000..7f118703 --- /dev/null +++ b/test/integration/test_GW150914_Pv2.py @@ -0,0 +1,167 @@ +import time + +import jax +import jax.numpy as jnp + +from jimgw.jim import Jim +from jimgw.jim import Jim +from jimgw.prior import ( + CombinePrior, + UniformPrior, + CosinePrior, + SinePrior, + PowerLawPrior, + UniformSpherePrior, +) +from jimgw.single_event.detector import H1, L1 +from jimgw.single_event.likelihood import TransientLikelihoodFD +from jimgw.single_event.waveform import RippleIMRPhenomPv2 +from jimgw.transforms import BoundToUnbound +from jimgw.single_event.transforms import ( + SkyFrameToDetectorFrameSkyPositionTransform, + SphereSpinToCartesianSpinTransform, + MassRatioToSymmetricMassRatioTransform, + DistanceToSNRWeightedDistanceTransform, + GeocentricArrivalTimeToDetectorArrivalTimeTransform, + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform, +) +from flowMC.strategy.optimization import optimization_Adam + +jax.config.update("jax_enable_x64", True) + +########################################### +########## First we grab data ############# +########################################### + +total_time_start = time.time() + +# first, fetch a 4s segment centered on GW150914 +gps = 1126259462.4 +duration = 4 +post_trigger_duration = 2 +start_pad = duration - post_trigger_duration +end_pad = post_trigger_duration +fmin = 20.0 +fmax = 1024.0 + +ifos = [H1, L1] + +for ifo in ifos: + ifo.load_data(gps, start_pad, end_pad, fmin, fmax, psd_pad=16, tukey_alpha=0.2) + +prior = [] + +# Mass prior +M_c_min, M_c_max = 10.0, 80.0 +q_min, q_max = 0.125, 1.0 +Mc_prior = UniformPrior(M_c_min, M_c_max, parameter_names=['M_c']) +q_prior = UniformPrior(q_min, q_max, parameter_names=['q']) + +prior = prior + [Mc_prior, q_prior] + +# Spin prior +s1_prior = UniformSpherePrior(parameter_names=["s1"]) +s2_prior = UniformSpherePrior(parameter_names=["s2"]) +iota_prior = SinePrior(parameter_names=["iota"]) + +prior = prior + [ + s1_prior, + s2_prior, + iota_prior, +] + +# Extrinsic prior +dL_prior = PowerLawPrior(1.0, 2000.0, 2.0, parameter_names=["d_L"]) +t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"]) +phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) +psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) +ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) +dec_prior = CosinePrior(parameter_names=["dec"]) + +prior = prior + [ + dL_prior, + t_c_prior, + phase_c_prior, + psi_prior, + ra_prior, + dec_prior, +] + +prior = CombinePrior(prior) + +# Defining Transforms + +sample_transforms = [ + DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax), + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]), + GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]), + SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), + BoundToUnbound(name_mapping = (["M_c"], ["M_c_unbounded"]), original_lower_bound=M_c_min, original_upper_bound=M_c_max), + BoundToUnbound(name_mapping = (["q"], ["q_unbounded"]), original_lower_bound=q_min, original_upper_bound=q_max), + BoundToUnbound(name_mapping = (["s1_phi"], ["s1_phi_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["s2_phi"], ["s2_phi_unbounded"]) , original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["iota"], ["iota_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s1_theta"], ["s1_theta_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s2_theta"], ["s2_theta_unbounded"]) , original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["s1_mag"], ["s1_mag_unbounded"]) , original_lower_bound=0.0, original_upper_bound=0.99), + BoundToUnbound(name_mapping = (["s2_mag"], ["s2_mag_unbounded"]) , original_lower_bound=0.0, original_upper_bound=0.99), + BoundToUnbound(name_mapping = (["phase_det"], ["phase_det_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = (["psi"], ["psi_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["zenith"], ["zenith_unbounded"]), original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = (["azimuth"], ["azimuth_unbounded"]), original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), +] + +likelihood_transforms = [ + MassRatioToSymmetricMassRatioTransform, + SphereSpinToCartesianSpinTransform("s1"), + SphereSpinToCartesianSpinTransform("s2"), +] + +likelihood = TransientLikelihoodFD( + ifos, + waveform=RippleIMRPhenomPv2(), + trigger_time=gps, + duration=4, + post_trigger_duration=2, +) + + +n_dim = sum([ind_prior.n_dim for ind_prior in prior.base_prior]) +mass_matrix = jnp.eye(n_dim) +mass_matrix = mass_matrix.at[1, 1].set(1e-3) +mass_matrix = mass_matrix.at[9, 9].set(1e-3) +local_sampler_arg = {"step_size": mass_matrix * 3e-3} + +Adam_optimizer = optimization_Adam(n_steps=5, learning_rate=0.01, noise_level=1) + +n_epochs = 2 +n_loop_training = 1 +learning_rate = 1e-4 + + +jim = Jim( + likelihood, + prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_loop_training=n_loop_training, + n_loop_production=1, + n_local_steps=5, + n_global_steps=5, + n_chains=4, + n_epochs=n_epochs, + learning_rate=learning_rate, + n_max_examples=30, + n_flow_samples=100, + momentum=0.9, + batch_size=100, + use_global=True, + train_thinning=1, + output_thinning=1, + local_sampler_arg=local_sampler_arg, + strategies=[Adam_optimizer, "default"], +) + +jim.sample(jax.random.PRNGKey(42)) +jim.get_samples() +jim.print_summary() diff --git a/test/integration/test_extrinsic.py b/test/integration/test_extrinsic.py new file mode 100644 index 00000000..300f2132 --- /dev/null +++ b/test/integration/test_extrinsic.py @@ -0,0 +1,106 @@ +from astropy.time import Time + +import jax +import jax.numpy as jnp + +from jimgw.jim import Jim +from jimgw.prior import CombinePrior, UniformPrior, CosinePrior, SinePrior, PowerLawPrior +from jimgw.single_event.detector import H1, L1, V1 +from jimgw.single_event.likelihood import ZeroLikelihood +from jimgw.transforms import BoundToUnbound, SingleSidedUnboundTransform +from jimgw.single_event.transforms import MassRatioToSymmetricMassRatioTransform, SkyFrameToDetectorFrameSkyPositionTransform, DistanceToSNRWeightedDistanceTransform, GeocentricArrivalTimeToDetectorArrivalTimeTransform, GeocentricArrivalPhaseToDetectorArrivalPhaseTransform +from flowMC.strategy.optimization import optimization_Adam + +jax.config.update("jax_enable_x64", True) + +########################################### +########## First we grab data ############# +########################################### + +# first, fetch a 4s segment centered on GW150914 +gps = 1126259462.4 + +ifos = [H1, L1, V1] + +M_c_prior = UniformPrior(10.0, 80.0, parameter_names=["M_c"]) +dL_prior = PowerLawPrior(10.0, 2000.0, 2.0, parameter_names=["d_L"]) +t_c_prior = UniformPrior(-0.05, 0.05, parameter_names=["t_c"]) +phase_c_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["phase_c"]) +iota_prior = SinePrior(parameter_names=["iota"]) +psi_prior = UniformPrior(0.0, jnp.pi, parameter_names=["psi"]) +ra_prior = UniformPrior(0.0, 2 * jnp.pi, parameter_names=["ra"]) +dec_prior = CosinePrior(parameter_names=["dec"]) + +prior = CombinePrior( + [ + M_c_prior, + dL_prior, + t_c_prior, + phase_c_prior, + iota_prior, + psi_prior, + ra_prior, + dec_prior, + ] +) + + +sample_transforms = [ + # all the user reparametrization transform + DistanceToSNRWeightedDistanceTransform(gps_time=gps, ifos=ifos, dL_min=dL_prior.xmin, dL_max=dL_prior.xmax), + GeocentricArrivalPhaseToDetectorArrivalPhaseTransform(gps_time=gps, ifo=ifos[0]), + GeocentricArrivalTimeToDetectorArrivalTimeTransform(tc_min=t_c_prior.xmin, tc_max=t_c_prior.xmax, gps_time=gps, ifo=ifos[0]), + SkyFrameToDetectorFrameSkyPositionTransform(gps_time=gps, ifos=ifos), + # all the bound to unbound transform + BoundToUnbound(name_mapping = [["M_c"], ["M_c_unbounded"]], original_lower_bound=10.0, original_upper_bound=80.0), + BoundToUnbound(name_mapping = [["iota"], ["iota_unbounded"]], original_lower_bound=0., original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = [["psi"], ["psi_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = [["zenith"], ["zenith_unbounded"]], original_lower_bound=0.0, original_upper_bound=jnp.pi), + BoundToUnbound(name_mapping = [["azimuth"], ["azimuth_unbounded"]], original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), + BoundToUnbound(name_mapping = [["phase_det"], ["phase_det_unbounded"]], original_lower_bound=0.0, original_upper_bound=2 * jnp.pi), +] + +likelihood_transforms = [] + +likelihood = ZeroLikelihood() + +mass_matrix = jnp.eye(len(prior.base_prior)) +#mass_matrix = mass_matrix.at[1, 1].set(1e-3) +#mass_matrix = mass_matrix.at[5, 5].set(1e-3) +local_sampler_arg = {"step_size": mass_matrix * 3e-3} + +Adam_optimizer = optimization_Adam(n_steps=5, learning_rate=0.01, noise_level=1) + +n_epochs = 2 +n_loop_training = 1 +learning_rate = 1e-4 + + +jim = Jim( + likelihood, + prior, + sample_transforms=sample_transforms, + likelihood_transforms=likelihood_transforms, + n_loop_training=n_loop_training, + n_loop_production=1, + n_local_steps=2, + n_global_steps=2, + n_chains=10, + n_epochs=n_epochs, + learning_rate=learning_rate, + n_max_examples=30, + n_flow_samples=100, + momentum=0.9, + batch_size=100, + use_global=True, + train_thinning=1, + output_thinning=1, + local_sampler_arg=local_sampler_arg, + strategies=["default"], +) + +print("Start sampling") +key = jax.random.PRNGKey(42) +jim.sample(key) +jim.print_summary() +samples = jim.get_samples() diff --git a/test/integration/test_mass_transforms.py b/test/integration/test_mass_transforms.py new file mode 100644 index 00000000..65b95244 --- /dev/null +++ b/test/integration/test_mass_transforms.py @@ -0,0 +1,106 @@ +import os +os.environ["CUDA_VISIBLE_DEVICES"] = "3" +os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "0.10" + +import numpy as np +import matplotlib.pyplot as plt +import corner +import jax +import jax.numpy as jnp +from jaxtyping import Float + +from jimgw.prior import UniformPrior, CombinePrior +from jimgw.single_event.transforms import ChirpMassMassRatioToComponentMassesTransform +from jimgw.base import LikelihoodBase +from jimgw.jim import Jim + +params = {"axes.grid": True, + "text.usetex" : True, + "font.family" : "serif", + "ytick.color" : "black", + "xtick.color" : "black", + "axes.labelcolor" : "black", + "axes.edgecolor" : "black", + "font.serif" : ["Computer Modern Serif"], + "xtick.labelsize": 16, + "ytick.labelsize": 16, + "axes.labelsize": 16, + "legend.fontsize": 16, + "legend.title_fontsize": 16, + "figure.titlesize": 16} + +plt.rcParams.update(params) + +# Improved corner kwargs +default_corner_kwargs = dict(bins=40, + smooth=1., + show_titles=False, + label_kwargs=dict(fontsize=16), + title_kwargs=dict(fontsize=16), + color="blue", + # quantiles=[], + # levels=[0.9], + plot_density=True, + plot_datapoints=False, + fill_contours=True, + max_n_ticks=4, + min_n_ticks=3, + truth_color = "red", + save=False) + +# Likelihood for this test: + +class MyLikelihood(LikelihoodBase): + """Simple toy likelihood: Gaussian centered on the true component masses""" + + true_m1: Float + true_m2: Float + + def __init__(self, + true_m1: Float, + true_m2: Float): + + self.true_m1 = true_m1 + self.true_m2 = true_m2 + + def evaluate(self, params: dict[str, Float], data: dict) -> Float: + m1, m2 = params['m_1'], params['m_2'] + m1_std = 0.1 + m2_std = 0.1 + return -0.5 * (((m1 - self.true_m1) / m1_std)**2 + ((m2 - self.true_m2) / m2_std)**2) + +# Setup +true_m1 = 1.6 +true_m2 = 1.4 +true_mc = (true_m1 * true_m2)**(3/5) / (true_m1 + true_m2)**(1/5) +true_q = true_m2 / true_m1 + +# Priors +eps = 0.5 # half of width of the chirp mass prior +mc_prior = UniformPrior(true_mc - eps, true_mc + eps, parameter_names=['M_c']) +q_prior = UniformPrior(0.125, 1.0, parameter_names=['q']) +combine_prior = CombinePrior([mc_prior, q_prior]) + +# Likelihood and transform +likelihood = MyLikelihood(true_m1, true_m2) +mass_transform = ChirpMassMassRatioToComponentMassesTransform + +print("Checking mass_transform repr") +print(repr(mass_transform)) + +# Other stuff we have to give to Jim to make it work +step = 5e-3 +local_sampler_arg = {"step_size": step * jnp.eye(2)} + +# Jim: +jim = Jim(likelihood, + combine_prior, + likelihood_transforms=[mass_transform], + n_chains = 10, + parameter_names=['M_c', 'q'], + n_loop_training=2, + n_loop_production=2, + local_sampler_arg=local_sampler_arg) + +jim.sample(jax.random.PRNGKey(0)) +jim.print_summary() \ No newline at end of file diff --git a/test/test_prior.py b/test/test_prior.py deleted file mode 100644 index 53b065da..00000000 --- a/test/test_prior.py +++ /dev/null @@ -1 +0,0 @@ -from jimgw.prior import Composite, Unconstrained_Uniform, Uniform diff --git a/test/test_detector.py b/test/unit/test_detector.py similarity index 100% rename from test/test_detector.py rename to test/unit/test_detector.py diff --git a/test/unit/test_prior.py b/test/unit/test_prior.py new file mode 100644 index 00000000..852ded16 --- /dev/null +++ b/test/unit/test_prior.py @@ -0,0 +1,113 @@ +from jimgw.prior import * +from jimgw.utils import trace_prior_parent +import scipy.stats as stats + + +class TestUnivariatePrior: + def test_logistic(self): + p = LogisticDistribution(["x"]) + # Check that the log_prob is finite + samples = p.sample(jax.random.PRNGKey(0), 10000) + log_prob = jax.vmap(p.log_prob)(samples) + assert jnp.all(jnp.isfinite(log_prob)) + # Cross-check log_prob with scipy.stats.logistic + x = jnp.linspace(-10.0, 10.0, 1000) + assert jnp.allclose(jax.vmap(p.log_prob)(p.add_name(x[None])), stats.logistic.logpdf(x)) + + def test_standard_normal(self): + p = StandardNormalDistribution(["x"]) + # Check that the log_prob is finite + samples = p.sample(jax.random.PRNGKey(0), 10000) + log_prob = jax.vmap(p.log_prob)(samples) + assert jnp.all(jnp.isfinite(log_prob)) + # Cross-check log_prob with scipy.stats.norm + x = jnp.linspace(-10.0, 10.0, 1000) + assert jnp.allclose(jax.vmap(p.log_prob)(p.add_name(x[None])), stats.norm.logpdf(x)) + + def test_uniform(self): + xmin, xmax = -10.0, 10.0 + p = UniformPrior(xmin, xmax, ["x"]) + # Check that all the samples are finite + samples = p.sample(jax.random.PRNGKey(0), 10000) + assert jnp.all(jnp.isfinite(samples['x'])) + # Check that the log_prob is correct in the support + log_prob = jax.vmap(p.log_prob)(samples) + assert jnp.allclose(log_prob, jnp.log(1.0 / (xmax - xmin))) + + def test_sine(self): + p = SinePrior(["x"]) + # Check that all the samples are finite + samples = p.sample(jax.random.PRNGKey(0), 10000) + assert jnp.all(jnp.isfinite(samples['x'])) + # Check that the log_prob is finite + log_prob = jax.vmap(p.log_prob)(samples) + assert jnp.all(jnp.isfinite(log_prob)) + # Check that the log_prob is correct in the support + x = trace_prior_parent(p, [])[0].add_name(jnp.linspace(-10.0, 10.0, 1000)[None]) + y = jax.vmap(p.base_prior.base_prior.transform)(x) + y = jax.vmap(p.base_prior.transform)(y) + y = jax.vmap(p.transform)(y) + assert jnp.allclose(jax.vmap(p.log_prob)(y), jnp.log(jnp.sin(y['x'])/2.0)) + + def test_cosine(self): + p = CosinePrior(["x"]) + # Check that all the samples are finite + samples = p.sample(jax.random.PRNGKey(0), 10000) + assert jnp.all(jnp.isfinite(samples['x'])) + # Check that the log_prob is finite + log_prob = jax.vmap(p.log_prob)(samples) + assert jnp.all(jnp.isfinite(log_prob)) + # Check that the log_prob is correct in the support + x = trace_prior_parent(p, [])[0].add_name(jnp.linspace(-10.0, 10.0, 1000)[None]) + y = jax.vmap(p.base_prior.transform)(x) + y = jax.vmap(p.transform)(y) + assert jnp.allclose(jax.vmap(p.log_prob)(y), jnp.log(jnp.cos(y['x'])/2.0)) + + def test_uniform_sphere(self): + p = UniformSpherePrior(["x"]) + # Check that all the samples are finite + samples = p.sample(jax.random.PRNGKey(0), 10000) + assert jnp.all(jnp.isfinite(samples['x_mag'])) + assert jnp.all(jnp.isfinite(samples['x_theta'])) + assert jnp.all(jnp.isfinite(samples['x_phi'])) + # Check that the log_prob is finite + log_prob = jax.vmap(p.log_prob)(samples) + assert jnp.all(jnp.isfinite(log_prob)) + + + def test_power_law(self): + def powerlaw_log_pdf(x, alpha, xmin, xmax): + if alpha == -1.0: + normalization = 1./(jnp.log(xmax) - jnp.log(xmin)) + else: + normalization = (1.0 + alpha) / (xmax**(1.0 + alpha) - xmin**(1.0 + alpha)) + return jnp.log(normalization) + alpha * jnp.log(x) + + def func(alpha): + xmin = 0.05 + xmax = 10.0 + p = PowerLawPrior(xmin, xmax, alpha, ["x"]) + # Check that all the samples are finite + powerlaw_samples = p.sample(jax.random.PRNGKey(0), 10000) + assert jnp.all(jnp.isfinite(powerlaw_samples['x'])) + + # Check that all the log_probs are finite + log_p = jax.vmap(p.log_prob, [0])(powerlaw_samples) + assert jnp.all(jnp.isfinite(log_p)) + + # Check that the log_prob is correct in the support + log_prob = jax.vmap(p.log_prob)(powerlaw_samples) + standard_log_prob = powerlaw_log_pdf(powerlaw_samples['x'], alpha, xmin, xmax) + # log pdf of powerlaw + assert jnp.allclose(log_prob, standard_log_prob, atol=1e-4) + + # Test Pareto Transform + func(-1.0) + # Test other values of alpha + print("Testing PowerLawPrior") + positive_alpha = [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0] + for alpha_val in positive_alpha: + func(alpha_val) + negative_alpha = [-0.5, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0] + for alpha_val in negative_alpha: + func(alpha_val) \ No newline at end of file diff --git a/test/unit/test_transform.py b/test/unit/test_transform.py new file mode 100644 index 00000000..14162f79 --- /dev/null +++ b/test/unit/test_transform.py @@ -0,0 +1,48 @@ +# import numpy as np +# import jax.numpy as jnp + +# class TestTransform: +# def test_sky_location_transform(self): +# from bilby.gw.utils import zenith_azimuth_to_ra_dec as bilby_earth_to_sky +# from bilby.gw.detector.networks import InterferometerList + +# from jimgw.single_event.utils import zenith_azimuth_to_ra_dec as jimgw_earth_to_sky +# from jimgw.single_event.detector import detector_preset +# from astropy.time import Time + +# ifos = ["H1", "L1"] +# geocent_time = 1000000000 + +# import matplotlib.pyplot as plt + +# for zenith in np.linspace(0, np.pi, 10): +# for azimuth in np.linspace(0, 2*np.pi, 10): +# bilby_sky_location = np.array(bilby_earth_to_sky(zenith, azimuth, geocent_time, InterferometerList(ifos))) +# jimgw_sky_location = np.array(jimgw_earth_to_sky(zenith, azimuth, Time(geocent_time, format="gps").sidereal_time("apparent", "greenwich").rad, detector_preset[ifos[0]].vertex - detector_preset[ifos[1]].vertex)) +# assert np.allclose(bilby_sky_location, jimgw_sky_location, atol=1e-4) + +# def test_spin_transform(self): +# from bilby.gw.conversion import bilby_to_lalsimulation_spins as bilby_spin_transform +# from bilby.gw.conversion import symmetric_mass_ratio_to_mass_ratio, chirp_mass_and_mass_ratio_to_component_masses + +# from jimgw.single_event.utils import spin_to_cartesian_spin as jimgw_spin_transform + +# for _ in range(100): +# thetaJN = jnp.array(np.random.uniform(0, np.pi)) +# phiJL = jnp.array(np.random.uniform(0, np.pi)) +# theta1 = jnp.array(np.random.uniform(0, np.pi)) +# theta2 = jnp.array(np.random.uniform(0, np.pi)) +# phi12 = jnp.array(np.random.uniform(0, np.pi)) +# chi1 = jnp.array(np.random.uniform(0, 1)) +# chi2 = jnp.array(np.random.uniform(0, 1)) +# M_c = jnp.array(np.random.uniform(1, 100)) +# eta = jnp.array(np.random.uniform(0.1, 0.25)) +# fRef = jnp.array(np.random.uniform(10, 1000)) +# phiRef = jnp.array(np.random.uniform(0, 2*np.pi)) + +# q = symmetric_mass_ratio_to_mass_ratio(eta) +# m1, m2 = chirp_mass_and_mass_ratio_to_component_masses(M_c, q) +# MsunInkg = 1.9884e30 +# bilby_spin = jnp.array(bilby_spin_transform(thetaJN, phiJL, theta1, theta2, phi12, chi1, chi2, m1*MsunInkg, m2*MsunInkg, fRef, phiRef)) +# jimgw_spin = jnp.array(jimgw_spin_transform(thetaJN, phiJL, theta1, theta2, phi12, chi1, chi2, M_c, eta, fRef, phiRef)) +# assert np.allclose(bilby_spin, jimgw_spin, atol=1e-4) diff --git a/uv.lock b/uv.lock new file mode 100644 index 00000000..d3a39a98 --- /dev/null +++ b/uv.lock @@ -0,0 +1,2810 @@ +version = 1 +requires-python = ">=3.10" +resolution-markers = [ + "python_full_version < '3.11'", + "python_full_version == '3.11.*'", + "python_full_version == '3.12.*'", + "python_full_version >= '3.13'", +] + +[[package]] +name = "absl-py" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7a/8f/fc001b92ecc467cc32ab38398bd0bfb45df46e7523bf33c2ad22a505f06e/absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff", size = 118055 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a2/ad/e0d3c824784ff121c03cc031f944bc7e139a8f1870ffd2845cc2dd76f6c4/absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308", size = 133706 }, +] + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321 }, +] + +[[package]] +name = "astropy" +version = "6.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "astropy-iers-data" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pyerfa" }, + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/13/25/adf5ee49f3990fc5cde050cce9c6f0a74a78af4eb18bd3aec8f1eecd1a26/astropy-6.1.4.tar.gz", hash = "sha256:361558e2b093a99bebe69f1fd47fac86a192607a4c16ed39ba0a800b2ab60c34", size = 7057481 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4e/c7/bb755b5013782633554a1ce6da0f03de4fbea1afc651f70d455f2a3aa4b1/astropy-6.1.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7954cdfea00445ed186431888ec8ab12d9e3adfdf316038c44009f57438e6389", size = 6527362 }, + { url = "https://files.pythonhosted.org/packages/5a/58/d028afa860a28ba911fc31ea47458847370f345683b75f74069ef1810599/astropy-6.1.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c0298f0e0d57cc61915a4438d54e47b4517ff6c7c5144ae4679077cfb0826d0b", size = 6406624 }, + { url = "https://files.pythonhosted.org/packages/17/7b/70b6a61d44013eb68ee011696873eb647748e8d4ef33462a8243898fd83f/astropy-6.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2491dc9a8f9c046b808995b2e3dc9ad8349c83042729b26c7907b5f7fbc53fd4", size = 9888968 }, + { url = "https://files.pythonhosted.org/packages/a3/da/79080f115d416e3ff294e9ef183014e1c34f227404071d33ecdb92ed91d6/astropy-6.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:22cc40cb137bbd777389d96871d84438537d01e1cd1dd1fc3dca374b4ece3200", size = 9958609 }, + { url = "https://files.pythonhosted.org/packages/fb/34/5d5f836655f910277a4f425bfb5b82435a4d3235e9b85896f02e23f2a824/astropy-6.1.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ec13a67ffac3d2b79ab2b725b16943133951cdd6833ab8941db798bc4de2da49", size = 9983955 }, + { url = "https://files.pythonhosted.org/packages/26/f2/96ddc395699959c7b9771d7beee15cf6f84ae17dba0b99e2f94cde1423ca/astropy-6.1.4-cp310-cp310-win32.whl", hash = "sha256:dbd7addf8c79d50e18eeef6c85aee7dd009f2e80756bc4d9b866592eeaca3577", size = 6270731 }, + { url = "https://files.pythonhosted.org/packages/94/17/9a27766b5c378949b04f3c010bd8ced5a269070e583dc6f30a0c0415332b/astropy-6.1.4-cp310-cp310-win_amd64.whl", hash = "sha256:86e045e7ddfbfc500d015a9a6603be446c492c68fc019e69274b26e098aae50c", size = 6391292 }, + { url = "https://files.pythonhosted.org/packages/52/2b/50e0fe0d750d87573d7bd0fd8f0d37210c6f04fc924c29995945ed5d0def/astropy-6.1.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:601d8a9a8d44f45064d2d8cc963cecf3949d3fbc10c9b6412c241cdc0c686b2c", size = 6527451 }, + { url = "https://files.pythonhosted.org/packages/15/0b/2ca63201730c3cb1335b370ee8800ae6ba16fbfd6e47958771d7b667bdb1/astropy-6.1.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:cfc23b9e5e899f66f1377dc1116c247e6c7d0f92623ca115ad084a297414de03", size = 6405709 }, + { url = "https://files.pythonhosted.org/packages/9b/10/e98e7e985ac50ff75c73a925ce3403aebc6c08307ace54e56981ccd3efe8/astropy-6.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52683072d106162ca124e09f2f132de58ca9756e04c25ebd45d56cbdd6feb8f7", size = 10146911 }, + { url = "https://files.pythonhosted.org/packages/d3/8f/5cffeea42c7cde892aa4e0209ec1b3b989bbb7b5c5fc711bce049468d465/astropy-6.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:50ab8d8097df76e33b56ab429d07240df6f273ccd267949ff99f8df79c7fcc42", size = 10206852 }, + { url = "https://files.pythonhosted.org/packages/ea/22/d44fee1a76eb93f47eefc11e38c9f8969c39dfe17c6a7b0365d9c506022e/astropy-6.1.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:81152825e80a03562cf2b95164c0ae7f56cd3521208a13221b3afa683c1469a6", size = 10242130 }, + { url = "https://files.pythonhosted.org/packages/fd/2a/0541025e01e5247ca3ab7994f14ce78f7eb5f4aa0f8c84899e88ddd8dee3/astropy-6.1.4-cp311-cp311-win32.whl", hash = "sha256:af49e0a80ee6243727f449a6d8c99e711b2a4fdd1701d92c42964cd3e01a3490", size = 6268705 }, + { url = "https://files.pythonhosted.org/packages/5e/26/95178806d3ec81c256e59ca602102249d5996bf75448c99d00a3a09f01b6/astropy-6.1.4-cp311-cp311-win_amd64.whl", hash = "sha256:b2fa9e1031eb83bee2d0b29f3e4d85a9d8b38ecb1b759a0ffbb8145fe8685d0e", size = 6393199 }, + { url = "https://files.pythonhosted.org/packages/0f/f6/6906f3adf452b829776577462ab0450835723fae7fa3a1d4bc09350f053a/astropy-6.1.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:cf4ce31973dd18da522bb8f0fac91685ab1fcf21ca81251c79b09ef27d2b0d8f", size = 6531832 }, + { url = "https://files.pythonhosted.org/packages/a9/c5/4946b949b1adfdef30f393cd9bc05dcec8cbe3b860e868a6f805ad231156/astropy-6.1.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9d4d10d964bfd110751fd47132af5227807d2beca85669b3d00d29cf5bae167d", size = 6411341 }, + { url = "https://files.pythonhosted.org/packages/98/c9/e18849886c84177f84c81204b93ae013b390ba17c2668efb8b758b88f16d/astropy-6.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:26c6cc099a312aaf0e473a4ea2ac4279f79ef53c8413e8259758d0f5930b4745", size = 10174046 }, + { url = "https://files.pythonhosted.org/packages/8c/23/dec61952031ba6e8c3e22a2027febccab4b97a96bc967cc3ed0a17cfd0df/astropy-6.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3085e201e9d4bd223a543f7e2c0810dc873ea6a81bbdf06b5a987aa10e09bce", size = 10254180 }, + { url = "https://files.pythonhosted.org/packages/95/6b/d26ccd59f2d78e9141b0fea7f7d8a7ff783a5ae365a9dc6b9b5a44ec9ef4/astropy-6.1.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a1598720ac43875e602f1fe9766133ab67d50164047b5ed18f5e35d2fa69e914", size = 10273538 }, + { url = "https://files.pythonhosted.org/packages/03/57/18616baa4c525a032ecd6404a736582420b9f059532ab9f6a6227e2712fd/astropy-6.1.4-cp312-cp312-win32.whl", hash = "sha256:59576f354772c448300438acc910b5a37b9d15ddfaa5c942746a7253a6c7765f", size = 6268393 }, + { url = "https://files.pythonhosted.org/packages/67/59/ba3a3e9ef57021c5081fd79f3cafddc67dd2503678b40e9d5c72381ac254/astropy-6.1.4-cp312-cp312-win_amd64.whl", hash = "sha256:27496654ae2e672fa13eee9200caa776f47fbdce9ece55adcfe1d7e37e80341e", size = 6392567 }, + { url = "https://files.pythonhosted.org/packages/19/88/30f91cd3f33a101d496704ba3696d30c17bec3ec05134610dca6d70d3079/astropy-6.1.4-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:024cbba2b20d6abf50395669a010b1c026a0b966ba2292addd354163b0b44e55", size = 6524601 }, + { url = "https://files.pythonhosted.org/packages/57/35/07b36c4d11e1edee72708449cc4062bf6209e517388fb42d219940afcfc7/astropy-6.1.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:aeec3aa6c12f613b2609dfbf9bac355b5e64446e67643637ee449bdcf583f5e2", size = 6404147 }, + { url = "https://files.pythonhosted.org/packages/d9/44/15cfbc421d1dec01defc49bfcd3310aea6ee14100ae3a42e6e4b14bbddfb/astropy-6.1.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1ed2dfb1551b2f140ca636c0156ab6a6a13f4202b7f3bc06fa739058f311d18", size = 10103041 }, + { url = "https://files.pythonhosted.org/packages/61/bd/66d543d5e9d31889d48a265c6512eeb0e5bd97c6493fc244b88bc76ff61b/astropy-6.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1a48e1dbd8072b3ef8a94334bc5344bf33bfd2b1b0236ca02eaa2cc3ca4b90", size = 10190934 }, + { url = "https://files.pythonhosted.org/packages/1b/73/6d6fd362ff5e3e8e333f126f8163abc7b3c4415473faa6f41bfcd7a323b3/astropy-6.1.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b23cb881cf1fa0795b92ab2d86b04339a0a38b336e3a391fd050b6caf695b01b", size = 10215470 }, + { url = "https://files.pythonhosted.org/packages/ba/23/bda94ccae81d90c8642defa0777424abfef23fe9103128fb3e37bcec3168/astropy-6.1.4-cp313-cp313-win32.whl", hash = "sha256:b28752d9515dac72358bce58214ef4bae89bfc4af548c98f6052ff91b38e93ee", size = 6266143 }, + { url = "https://files.pythonhosted.org/packages/ce/2c/10889bf3a672c470769e79274a3c7c54ba56d51e52a78a8612cd46ccd0ff/astropy-6.1.4-cp313-cp313-win_amd64.whl", hash = "sha256:048ae0883db33f94dea03800211d2e4a0aacaf8d0f0640196815d9d1298b7449", size = 6389682 }, +] + +[[package]] +name = "astropy-iers-data" +version = "0.2024.10.14.0.32.55" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f4/99/f9c18b1234b7a093be0b6833e77f712a22906996315f5032cfdca5c05980/astropy_iers_data-0.2024.10.14.0.32.55.tar.gz", hash = "sha256:efe7e5b26fa064df08fcda528ea910c79137625208ccc4073addf4f0eb9289a0", size = 1881292 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2b/68/9af5fb22fc04f54f8a27f6a90abe48707eeaa7c564f4f5e547cb3eecfa11/astropy_iers_data-0.2024.10.14.0.32.55-py3-none-any.whl", hash = "sha256:1a7c8e12bfe2af5605fd46dd9f8cb7fc9e9a78328cd231fdf6753b1814efe597", size = 1933242 }, +] + +[[package]] +name = "asttokens" +version = "2.4.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/45/1d/f03bcb60c4a3212e15f99a56085d93093a497718adf828d050b9d675da81/asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0", size = 62284 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/45/86/4736ac618d82a20d87d2f92ae19441ebc7ac9e7a581d7e58bbe79233b24a/asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24", size = 27764 }, +] + +[[package]] +name = "attrs" +version = "24.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fc/0f/aafca9af9315aee06a89ffde799a10a582fe8de76c563ee80bbcdc08b3fb/attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346", size = 792678 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/21/5b6702a7f963e95456c0de2d495f67bf5fd62840ac655dc451586d23d39a/attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2", size = 63001 }, +] + +[[package]] +name = "babel" +version = "2.16.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2a/74/f1bc80f23eeba13393b7222b11d95ca3af2c1e28edca18af487137eefed9/babel-2.16.0.tar.gz", hash = "sha256:d1f3554ca26605fe173f3de0c65f750f5a42f924499bf134de6423582298e316", size = 9348104 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ed/20/bc79bc575ba2e2a7f70e8a1155618bb1301eaa5132a8271373a6903f73f8/babel-2.16.0-py3-none-any.whl", hash = "sha256:368b5b98b37c06b7daf6696391c3240c938b37767d4584413e8438c5c435fa8b", size = 9587599 }, +] + +[[package]] +name = "beartype" +version = "0.19.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6f/e1/00515b97afa3993b4a314e4bc168fbde0917fd5845435cb6f16a19770746/beartype-0.19.0.tar.gz", hash = "sha256:de42dfc1ba5c3710fde6c3002e3bd2cad236ed4d2aabe876345ab0b4234a6573", size = 1294480 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/64/69/f6db6e4cb2fe2f887dead40b76caa91af4844cb647dd2c7223bb010aa416/beartype-0.19.0-py3-none-any.whl", hash = "sha256:33b2694eda0daf052eb2aff623ed9a8a586703bbf0a90bbc475a83bbf427f699", size = 1039760 }, +] + +[[package]] +name = "beautifulsoup4" +version = "4.12.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "soupsieve" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b3/ca/824b1195773ce6166d388573fc106ce56d4a805bd7427b624e063596ec58/beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051", size = 581181 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b1/fe/e8c672695b37eecc5cbf43e1d0638d88d66ba3a44c4d321c796f4e59167f/beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed", size = 147925 }, +] + +[[package]] +name = "bleach" +version = "6.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6d/10/77f32b088738f40d4f5be801daa5f327879eadd4562f36a2b5ab975ae571/bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe", size = 202119 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ea/63/da7237f805089ecc28a3f36bca6a21c31fcbc2eb380f3b8f1be3312abd14/bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6", size = 162750 }, +] + +[[package]] +name = "certifi" +version = "2024.8.30" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b0/ee/9b19140fe824b367c04c5e1b369942dd754c4c5462d5674002f75c4dedc1/certifi-2024.8.30.tar.gz", hash = "sha256:bec941d2aa8195e248a60b31ff9f0558284cf01a52591ceda73ea9afffd69fd9", size = 168507 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/12/90/3c9ff0512038035f59d279fddeb79f5f1eccd8859f06d6163c58798b9487/certifi-2024.8.30-py3-none-any.whl", hash = "sha256:922820b53db7a7257ffbda3f597266d435245903d80737e34f8a45ff3e3230d8", size = 167321 }, +] + +[[package]] +name = "cffi" +version = "1.17.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/97/c783634659c2920c3fc70419e3af40972dbaf758daa229a7d6ea6135c90d/cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824", size = 516621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/07/f44ca684db4e4f08a3fdc6eeb9a0d15dc6883efc7b8c90357fdbf74e186c/cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14", size = 182191 }, + { url = "https://files.pythonhosted.org/packages/08/fd/cc2fedbd887223f9f5d170c96e57cbf655df9831a6546c1727ae13fa977a/cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67", size = 178592 }, + { url = "https://files.pythonhosted.org/packages/de/cc/4635c320081c78d6ffc2cab0a76025b691a91204f4aa317d568ff9280a2d/cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382", size = 426024 }, + { url = "https://files.pythonhosted.org/packages/b6/7b/3b2b250f3aab91abe5f8a51ada1b717935fdaec53f790ad4100fe2ec64d1/cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702", size = 448188 }, + { url = "https://files.pythonhosted.org/packages/d3/48/1b9283ebbf0ec065148d8de05d647a986c5f22586b18120020452fff8f5d/cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3", size = 455571 }, + { url = "https://files.pythonhosted.org/packages/40/87/3b8452525437b40f39ca7ff70276679772ee7e8b394934ff60e63b7b090c/cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6", size = 436687 }, + { url = "https://files.pythonhosted.org/packages/8d/fb/4da72871d177d63649ac449aec2e8a29efe0274035880c7af59101ca2232/cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17", size = 446211 }, + { url = "https://files.pythonhosted.org/packages/ab/a0/62f00bcb411332106c02b663b26f3545a9ef136f80d5df746c05878f8c4b/cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8", size = 461325 }, + { url = "https://files.pythonhosted.org/packages/36/83/76127035ed2e7e27b0787604d99da630ac3123bfb02d8e80c633f218a11d/cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e", size = 438784 }, + { url = "https://files.pythonhosted.org/packages/21/81/a6cd025db2f08ac88b901b745c163d884641909641f9b826e8cb87645942/cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be", size = 461564 }, + { url = "https://files.pythonhosted.org/packages/f8/fe/4d41c2f200c4a457933dbd98d3cf4e911870877bd94d9656cc0fcb390681/cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c", size = 171804 }, + { url = "https://files.pythonhosted.org/packages/d1/b6/0b0f5ab93b0df4acc49cae758c81fe4e5ef26c3ae2e10cc69249dfd8b3ab/cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15", size = 181299 }, + { url = "https://files.pythonhosted.org/packages/6b/f4/927e3a8899e52a27fa57a48607ff7dc91a9ebe97399b357b85a0c7892e00/cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401", size = 182264 }, + { url = "https://files.pythonhosted.org/packages/6c/f5/6c3a8efe5f503175aaddcbea6ad0d2c96dad6f5abb205750d1b3df44ef29/cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf", size = 178651 }, + { url = "https://files.pythonhosted.org/packages/94/dd/a3f0118e688d1b1a57553da23b16bdade96d2f9bcda4d32e7d2838047ff7/cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4", size = 445259 }, + { url = "https://files.pythonhosted.org/packages/2e/ea/70ce63780f096e16ce8588efe039d3c4f91deb1dc01e9c73a287939c79a6/cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41", size = 469200 }, + { url = "https://files.pythonhosted.org/packages/1c/a0/a4fa9f4f781bda074c3ddd57a572b060fa0df7655d2a4247bbe277200146/cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1", size = 477235 }, + { url = "https://files.pythonhosted.org/packages/62/12/ce8710b5b8affbcdd5c6e367217c242524ad17a02fe5beec3ee339f69f85/cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6", size = 459721 }, + { url = "https://files.pythonhosted.org/packages/ff/6b/d45873c5e0242196f042d555526f92aa9e0c32355a1be1ff8c27f077fd37/cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d", size = 467242 }, + { url = "https://files.pythonhosted.org/packages/1a/52/d9a0e523a572fbccf2955f5abe883cfa8bcc570d7faeee06336fbd50c9fc/cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6", size = 477999 }, + { url = "https://files.pythonhosted.org/packages/44/74/f2a2460684a1a2d00ca799ad880d54652841a780c4c97b87754f660c7603/cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f", size = 454242 }, + { url = "https://files.pythonhosted.org/packages/f8/4a/34599cac7dfcd888ff54e801afe06a19c17787dfd94495ab0c8d35fe99fb/cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b", size = 478604 }, + { url = "https://files.pythonhosted.org/packages/34/33/e1b8a1ba29025adbdcda5fb3a36f94c03d771c1b7b12f726ff7fef2ebe36/cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655", size = 171727 }, + { url = "https://files.pythonhosted.org/packages/3d/97/50228be003bb2802627d28ec0627837ac0bf35c90cf769812056f235b2d1/cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0", size = 181400 }, + { url = "https://files.pythonhosted.org/packages/5a/84/e94227139ee5fb4d600a7a4927f322e1d4aea6fdc50bd3fca8493caba23f/cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4", size = 183178 }, + { url = "https://files.pythonhosted.org/packages/da/ee/fb72c2b48656111c4ef27f0f91da355e130a923473bf5ee75c5643d00cca/cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c", size = 178840 }, + { url = "https://files.pythonhosted.org/packages/cc/b6/db007700f67d151abadf508cbfd6a1884f57eab90b1bb985c4c8c02b0f28/cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36", size = 454803 }, + { url = "https://files.pythonhosted.org/packages/1a/df/f8d151540d8c200eb1c6fba8cd0dfd40904f1b0682ea705c36e6c2e97ab3/cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5", size = 478850 }, + { url = "https://files.pythonhosted.org/packages/28/c0/b31116332a547fd2677ae5b78a2ef662dfc8023d67f41b2a83f7c2aa78b1/cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff", size = 485729 }, + { url = "https://files.pythonhosted.org/packages/91/2b/9a1ddfa5c7f13cab007a2c9cc295b70fbbda7cb10a286aa6810338e60ea1/cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99", size = 471256 }, + { url = "https://files.pythonhosted.org/packages/b2/d5/da47df7004cb17e4955df6a43d14b3b4ae77737dff8bf7f8f333196717bf/cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93", size = 479424 }, + { url = "https://files.pythonhosted.org/packages/0b/ac/2a28bcf513e93a219c8a4e8e125534f4f6db03e3179ba1c45e949b76212c/cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3", size = 484568 }, + { url = "https://files.pythonhosted.org/packages/d4/38/ca8a4f639065f14ae0f1d9751e70447a261f1a30fa7547a828ae08142465/cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8", size = 488736 }, + { url = "https://files.pythonhosted.org/packages/86/c5/28b2d6f799ec0bdecf44dced2ec5ed43e0eb63097b0f58c293583b406582/cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65", size = 172448 }, + { url = "https://files.pythonhosted.org/packages/50/b9/db34c4755a7bd1cb2d1603ac3863f22bcecbd1ba29e5ee841a4bc510b294/cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903", size = 181976 }, + { url = "https://files.pythonhosted.org/packages/8d/f8/dd6c246b148639254dad4d6803eb6a54e8c85c6e11ec9df2cffa87571dbe/cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e", size = 182989 }, + { url = "https://files.pythonhosted.org/packages/8b/f1/672d303ddf17c24fc83afd712316fda78dc6fce1cd53011b839483e1ecc8/cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2", size = 178802 }, + { url = "https://files.pythonhosted.org/packages/0e/2d/eab2e858a91fdff70533cab61dcff4a1f55ec60425832ddfdc9cd36bc8af/cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3", size = 454792 }, + { url = "https://files.pythonhosted.org/packages/75/b2/fbaec7c4455c604e29388d55599b99ebcc250a60050610fadde58932b7ee/cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683", size = 478893 }, + { url = "https://files.pythonhosted.org/packages/4f/b7/6e4a2162178bf1935c336d4da8a9352cccab4d3a5d7914065490f08c0690/cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5", size = 485810 }, + { url = "https://files.pythonhosted.org/packages/c7/8a/1d0e4a9c26e54746dc08c2c6c037889124d4f59dffd853a659fa545f1b40/cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4", size = 471200 }, + { url = "https://files.pythonhosted.org/packages/26/9f/1aab65a6c0db35f43c4d1b4f580e8df53914310afc10ae0397d29d697af4/cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd", size = 479447 }, + { url = "https://files.pythonhosted.org/packages/5f/e4/fb8b3dd8dc0e98edf1135ff067ae070bb32ef9d509d6cb0f538cd6f7483f/cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed", size = 484358 }, + { url = "https://files.pythonhosted.org/packages/f1/47/d7145bf2dc04684935d57d67dff9d6d795b2ba2796806bb109864be3a151/cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9", size = 488469 }, + { url = "https://files.pythonhosted.org/packages/bf/ee/f94057fa6426481d663b88637a9a10e859e492c73d0384514a17d78ee205/cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d", size = 172475 }, + { url = "https://files.pythonhosted.org/packages/7c/fc/6a8cb64e5f0324877d503c854da15d76c1e50eb722e320b15345c4d0c6de/cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a", size = 182009 }, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f2/4f/e1808dc01273379acc506d18f1504eb2d299bd4131743b9fc54d7be4df1e/charset_normalizer-3.4.0.tar.gz", hash = "sha256:223217c3d4f82c3ac5e29032b3f1c2eb0fb591b72161f86d93f5719079dae93e", size = 106620 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/8b/825cc84cf13a28bfbcba7c416ec22bf85a9584971be15b21dd8300c65b7f/charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4f9fc98dad6c2eaa32fc3af1417d95b5e3d08aff968df0cd320066def971f9a6", size = 196363 }, + { url = "https://files.pythonhosted.org/packages/23/81/d7eef6a99e42c77f444fdd7bc894b0ceca6c3a95c51239e74a722039521c/charset_normalizer-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0de7b687289d3c1b3e8660d0741874abe7888100efe14bd0f9fd7141bcbda92b", size = 125639 }, + { url = "https://files.pythonhosted.org/packages/21/67/b4564d81f48042f520c948abac7079356e94b30cb8ffb22e747532cf469d/charset_normalizer-3.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5ed2e36c3e9b4f21dd9422f6893dec0abf2cca553af509b10cd630f878d3eb99", size = 120451 }, + { url = "https://files.pythonhosted.org/packages/c2/72/12a7f0943dd71fb5b4e7b55c41327ac0a1663046a868ee4d0d8e9c369b85/charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40d3ff7fc90b98c637bda91c89d51264a3dcf210cade3a2c6f838c7268d7a4ca", size = 140041 }, + { url = "https://files.pythonhosted.org/packages/67/56/fa28c2c3e31217c4c52158537a2cf5d98a6c1e89d31faf476c89391cd16b/charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1110e22af8ca26b90bd6364fe4c763329b0ebf1ee213ba32b68c73de5752323d", size = 150333 }, + { url = "https://files.pythonhosted.org/packages/f9/d2/466a9be1f32d89eb1554cf84073a5ed9262047acee1ab39cbaefc19635d2/charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:86f4e8cca779080f66ff4f191a685ced73d2f72d50216f7112185dc02b90b9b7", size = 142921 }, + { url = "https://files.pythonhosted.org/packages/f8/01/344ec40cf5d85c1da3c1f57566c59e0c9b56bcc5566c08804a95a6cc8257/charset_normalizer-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f683ddc7eedd742e2889d2bfb96d69573fde1d92fcb811979cdb7165bb9c7d3", size = 144785 }, + { url = "https://files.pythonhosted.org/packages/73/8b/2102692cb6d7e9f03b9a33a710e0164cadfce312872e3efc7cfe22ed26b4/charset_normalizer-3.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27623ba66c183eca01bf9ff833875b459cad267aeeb044477fedac35e19ba907", size = 146631 }, + { url = "https://files.pythonhosted.org/packages/d8/96/cc2c1b5d994119ce9f088a9a0c3ebd489d360a2eb058e2c8049f27092847/charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f606a1881d2663630ea5b8ce2efe2111740df4b687bd78b34a8131baa007f79b", size = 140867 }, + { url = "https://files.pythonhosted.org/packages/c9/27/cde291783715b8ec30a61c810d0120411844bc4c23b50189b81188b273db/charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0b309d1747110feb25d7ed6b01afdec269c647d382c857ef4663bbe6ad95a912", size = 149273 }, + { url = "https://files.pythonhosted.org/packages/3a/a4/8633b0fc1a2d1834d5393dafecce4a1cc56727bfd82b4dc18fc92f0d3cc3/charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:136815f06a3ae311fae551c3df1f998a1ebd01ddd424aa5603a4336997629e95", size = 152437 }, + { url = "https://files.pythonhosted.org/packages/64/ea/69af161062166b5975ccbb0961fd2384853190c70786f288684490913bf5/charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:14215b71a762336254351b00ec720a8e85cada43b987da5a042e4ce3e82bd68e", size = 150087 }, + { url = "https://files.pythonhosted.org/packages/3b/fd/e60a9d9fd967f4ad5a92810138192f825d77b4fa2a557990fd575a47695b/charset_normalizer-3.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:79983512b108e4a164b9c8d34de3992f76d48cadc9554c9e60b43f308988aabe", size = 145142 }, + { url = "https://files.pythonhosted.org/packages/6d/02/8cb0988a1e49ac9ce2eed1e07b77ff118f2923e9ebd0ede41ba85f2dcb04/charset_normalizer-3.4.0-cp310-cp310-win32.whl", hash = "sha256:c94057af19bc953643a33581844649a7fdab902624d2eb739738a30e2b3e60fc", size = 94701 }, + { url = "https://files.pythonhosted.org/packages/d6/20/f1d4670a8a723c46be695dff449d86d6092916f9e99c53051954ee33a1bc/charset_normalizer-3.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:55f56e2ebd4e3bc50442fbc0888c9d8c94e4e06a933804e2af3e89e2f9c1c749", size = 102191 }, + { url = "https://files.pythonhosted.org/packages/9c/61/73589dcc7a719582bf56aae309b6103d2762b526bffe189d635a7fcfd998/charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:0d99dd8ff461990f12d6e42c7347fd9ab2532fb70e9621ba520f9e8637161d7c", size = 193339 }, + { url = "https://files.pythonhosted.org/packages/77/d5/8c982d58144de49f59571f940e329ad6e8615e1e82ef84584c5eeb5e1d72/charset_normalizer-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c57516e58fd17d03ebe67e181a4e4e2ccab1168f8c2976c6a334d4f819fe5944", size = 124366 }, + { url = "https://files.pythonhosted.org/packages/bf/19/411a64f01ee971bed3231111b69eb56f9331a769072de479eae7de52296d/charset_normalizer-3.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6dba5d19c4dfab08e58d5b36304b3f92f3bd5d42c1a3fa37b5ba5cdf6dfcbcee", size = 118874 }, + { url = "https://files.pythonhosted.org/packages/4c/92/97509850f0d00e9f14a46bc751daabd0ad7765cff29cdfb66c68b6dad57f/charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf4475b82be41b07cc5e5ff94810e6a01f276e37c2d55571e3fe175e467a1a1c", size = 138243 }, + { url = "https://files.pythonhosted.org/packages/e2/29/d227805bff72ed6d6cb1ce08eec707f7cfbd9868044893617eb331f16295/charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ce031db0408e487fd2775d745ce30a7cd2923667cf3b69d48d219f1d8f5ddeb6", size = 148676 }, + { url = "https://files.pythonhosted.org/packages/13/bc/87c2c9f2c144bedfa62f894c3007cd4530ba4b5351acb10dc786428a50f0/charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ff4e7cdfdb1ab5698e675ca622e72d58a6fa2a8aa58195de0c0061288e6e3ea", size = 141289 }, + { url = "https://files.pythonhosted.org/packages/eb/5b/6f10bad0f6461fa272bfbbdf5d0023b5fb9bc6217c92bf068fa5a99820f5/charset_normalizer-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3710a9751938947e6327ea9f3ea6332a09bf0ba0c09cae9cb1f250bd1f1549bc", size = 142585 }, + { url = "https://files.pythonhosted.org/packages/3b/a0/a68980ab8a1f45a36d9745d35049c1af57d27255eff8c907e3add84cf68f/charset_normalizer-3.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:82357d85de703176b5587dbe6ade8ff67f9f69a41c0733cf2425378b49954de5", size = 144408 }, + { url = "https://files.pythonhosted.org/packages/d7/a1/493919799446464ed0299c8eef3c3fad0daf1c3cd48bff9263c731b0d9e2/charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:47334db71978b23ebcf3c0f9f5ee98b8d65992b65c9c4f2d34c2eaf5bcaf0594", size = 139076 }, + { url = "https://files.pythonhosted.org/packages/fb/9d/9c13753a5a6e0db4a0a6edb1cef7aee39859177b64e1a1e748a6e3ba62c2/charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:8ce7fd6767a1cc5a92a639b391891bf1c268b03ec7e021c7d6d902285259685c", size = 146874 }, + { url = "https://files.pythonhosted.org/packages/75/d2/0ab54463d3410709c09266dfb416d032a08f97fd7d60e94b8c6ef54ae14b/charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f1a2f519ae173b5b6a2c9d5fa3116ce16e48b3462c8b96dfdded11055e3d6365", size = 150871 }, + { url = "https://files.pythonhosted.org/packages/8d/c9/27e41d481557be53d51e60750b85aa40eaf52b841946b3cdeff363105737/charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:63bc5c4ae26e4bc6be6469943b8253c0fd4e4186c43ad46e713ea61a0ba49129", size = 148546 }, + { url = "https://files.pythonhosted.org/packages/ee/44/4f62042ca8cdc0cabf87c0fc00ae27cd8b53ab68be3605ba6d071f742ad3/charset_normalizer-3.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bcb4f8ea87d03bc51ad04add8ceaf9b0f085ac045ab4d74e73bbc2dc033f0236", size = 143048 }, + { url = "https://files.pythonhosted.org/packages/01/f8/38842422988b795220eb8038745d27a675ce066e2ada79516c118f291f07/charset_normalizer-3.4.0-cp311-cp311-win32.whl", hash = "sha256:9ae4ef0b3f6b41bad6366fb0ea4fc1d7ed051528e113a60fa2a65a9abb5b1d99", size = 94389 }, + { url = "https://files.pythonhosted.org/packages/0b/6e/b13bd47fa9023b3699e94abf565b5a2f0b0be6e9ddac9812182596ee62e4/charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cee4373f4d3ad28f1ab6290684d8e2ebdb9e7a1b74fdc39e4c211995f77bec27", size = 101752 }, + { url = "https://files.pythonhosted.org/packages/d3/0b/4b7a70987abf9b8196845806198975b6aab4ce016632f817ad758a5aa056/charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0713f3adb9d03d49d365b70b84775d0a0d18e4ab08d12bc46baa6132ba78aaf6", size = 194445 }, + { url = "https://files.pythonhosted.org/packages/50/89/354cc56cf4dd2449715bc9a0f54f3aef3dc700d2d62d1fa5bbea53b13426/charset_normalizer-3.4.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:de7376c29d95d6719048c194a9cf1a1b0393fbe8488a22008610b0361d834ecf", size = 125275 }, + { url = "https://files.pythonhosted.org/packages/fa/44/b730e2a2580110ced837ac083d8ad222343c96bb6b66e9e4e706e4d0b6df/charset_normalizer-3.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a51b48f42d9358460b78725283f04bddaf44a9358197b889657deba38f329db", size = 119020 }, + { url = "https://files.pythonhosted.org/packages/9d/e4/9263b8240ed9472a2ae7ddc3e516e71ef46617fe40eaa51221ccd4ad9a27/charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b295729485b06c1a0683af02a9e42d2caa9db04a373dc38a6a58cdd1e8abddf1", size = 139128 }, + { url = "https://files.pythonhosted.org/packages/6b/e3/9f73e779315a54334240353eaea75854a9a690f3f580e4bd85d977cb2204/charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee803480535c44e7f5ad00788526da7d85525cfefaf8acf8ab9a310000be4b03", size = 149277 }, + { url = "https://files.pythonhosted.org/packages/1a/cf/f1f50c2f295312edb8a548d3fa56a5c923b146cd3f24114d5adb7e7be558/charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d59d125ffbd6d552765510e3f31ed75ebac2c7470c7274195b9161a32350284", size = 142174 }, + { url = "https://files.pythonhosted.org/packages/16/92/92a76dc2ff3a12e69ba94e7e05168d37d0345fa08c87e1fe24d0c2a42223/charset_normalizer-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8cda06946eac330cbe6598f77bb54e690b4ca93f593dee1568ad22b04f347c15", size = 143838 }, + { url = "https://files.pythonhosted.org/packages/a4/01/2117ff2b1dfc61695daf2babe4a874bca328489afa85952440b59819e9d7/charset_normalizer-3.4.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:07afec21bbbbf8a5cc3651aa96b980afe2526e7f048fdfb7f1014d84acc8b6d8", size = 146149 }, + { url = "https://files.pythonhosted.org/packages/f6/9b/93a332b8d25b347f6839ca0a61b7f0287b0930216994e8bf67a75d050255/charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6b40e8d38afe634559e398cc32b1472f376a4099c75fe6299ae607e404c033b2", size = 140043 }, + { url = "https://files.pythonhosted.org/packages/ab/f6/7ac4a01adcdecbc7a7587767c776d53d369b8b971382b91211489535acf0/charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b8dcd239c743aa2f9c22ce674a145e0a25cb1566c495928440a181ca1ccf6719", size = 148229 }, + { url = "https://files.pythonhosted.org/packages/9d/be/5708ad18161dee7dc6a0f7e6cf3a88ea6279c3e8484844c0590e50e803ef/charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:84450ba661fb96e9fd67629b93d2941c871ca86fc38d835d19d4225ff946a631", size = 151556 }, + { url = "https://files.pythonhosted.org/packages/5a/bb/3d8bc22bacb9eb89785e83e6723f9888265f3a0de3b9ce724d66bd49884e/charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:44aeb140295a2f0659e113b31cfe92c9061622cadbc9e2a2f7b8ef6b1e29ef4b", size = 149772 }, + { url = "https://files.pythonhosted.org/packages/f7/fa/d3fc622de05a86f30beea5fc4e9ac46aead4731e73fd9055496732bcc0a4/charset_normalizer-3.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:1db4e7fefefd0f548d73e2e2e041f9df5c59e178b4c72fbac4cc6f535cfb1565", size = 144800 }, + { url = "https://files.pythonhosted.org/packages/9a/65/bdb9bc496d7d190d725e96816e20e2ae3a6fa42a5cac99c3c3d6ff884118/charset_normalizer-3.4.0-cp312-cp312-win32.whl", hash = "sha256:5726cf76c982532c1863fb64d8c6dd0e4c90b6ece9feb06c9f202417a31f7dd7", size = 94836 }, + { url = "https://files.pythonhosted.org/packages/3e/67/7b72b69d25b89c0b3cea583ee372c43aa24df15f0e0f8d3982c57804984b/charset_normalizer-3.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:b197e7094f232959f8f20541ead1d9862ac5ebea1d58e9849c1bf979255dfac9", size = 102187 }, + { url = "https://files.pythonhosted.org/packages/f3/89/68a4c86f1a0002810a27f12e9a7b22feb198c59b2f05231349fbce5c06f4/charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:dd4eda173a9fcccb5f2e2bd2a9f423d180194b1bf17cf59e3269899235b2a114", size = 194617 }, + { url = "https://files.pythonhosted.org/packages/4f/cd/8947fe425e2ab0aa57aceb7807af13a0e4162cd21eee42ef5b053447edf5/charset_normalizer-3.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e9e3c4c9e1ed40ea53acf11e2a386383c3304212c965773704e4603d589343ed", size = 125310 }, + { url = "https://files.pythonhosted.org/packages/5b/f0/b5263e8668a4ee9becc2b451ed909e9c27058337fda5b8c49588183c267a/charset_normalizer-3.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:92a7e36b000bf022ef3dbb9c46bfe2d52c047d5e3f3343f43204263c5addc250", size = 119126 }, + { url = "https://files.pythonhosted.org/packages/ff/6e/e445afe4f7fda27a533f3234b627b3e515a1b9429bc981c9a5e2aa5d97b6/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54b6a92d009cbe2fb11054ba694bc9e284dad30a26757b1e372a1fdddaf21920", size = 139342 }, + { url = "https://files.pythonhosted.org/packages/a1/b2/4af9993b532d93270538ad4926c8e37dc29f2111c36f9c629840c57cd9b3/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ffd9493de4c922f2a38c2bf62b831dcec90ac673ed1ca182fe11b4d8e9f2a64", size = 149383 }, + { url = "https://files.pythonhosted.org/packages/fb/6f/4e78c3b97686b871db9be6f31d64e9264e889f8c9d7ab33c771f847f79b7/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:35c404d74c2926d0287fbd63ed5d27eb911eb9e4a3bb2c6d294f3cfd4a9e0c23", size = 142214 }, + { url = "https://files.pythonhosted.org/packages/2b/c9/1c8fe3ce05d30c87eff498592c89015b19fade13df42850aafae09e94f35/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4796efc4faf6b53a18e3d46343535caed491776a22af773f366534056c4e1fbc", size = 144104 }, + { url = "https://files.pythonhosted.org/packages/ee/68/efad5dcb306bf37db7db338338e7bb8ebd8cf38ee5bbd5ceaaaa46f257e6/charset_normalizer-3.4.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e7fdd52961feb4c96507aa649550ec2a0d527c086d284749b2f582f2d40a2e0d", size = 146255 }, + { url = "https://files.pythonhosted.org/packages/0c/75/1ed813c3ffd200b1f3e71121c95da3f79e6d2a96120163443b3ad1057505/charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:92db3c28b5b2a273346bebb24857fda45601aef6ae1c011c0a997106581e8a88", size = 140251 }, + { url = "https://files.pythonhosted.org/packages/7d/0d/6f32255c1979653b448d3c709583557a4d24ff97ac4f3a5be156b2e6a210/charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:ab973df98fc99ab39080bfb0eb3a925181454d7c3ac8a1e695fddfae696d9e90", size = 148474 }, + { url = "https://files.pythonhosted.org/packages/ac/a0/c1b5298de4670d997101fef95b97ac440e8c8d8b4efa5a4d1ef44af82f0d/charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:4b67fdab07fdd3c10bb21edab3cbfe8cf5696f453afce75d815d9d7223fbe88b", size = 151849 }, + { url = "https://files.pythonhosted.org/packages/04/4f/b3961ba0c664989ba63e30595a3ed0875d6790ff26671e2aae2fdc28a399/charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:aa41e526a5d4a9dfcfbab0716c7e8a1b215abd3f3df5a45cf18a12721d31cb5d", size = 149781 }, + { url = "https://files.pythonhosted.org/packages/d8/90/6af4cd042066a4adad58ae25648a12c09c879efa4849c705719ba1b23d8c/charset_normalizer-3.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ffc519621dce0c767e96b9c53f09c5d215578e10b02c285809f76509a3931482", size = 144970 }, + { url = "https://files.pythonhosted.org/packages/cc/67/e5e7e0cbfefc4ca79025238b43cdf8a2037854195b37d6417f3d0895c4c2/charset_normalizer-3.4.0-cp313-cp313-win32.whl", hash = "sha256:f19c1585933c82098c2a520f8ec1227f20e339e33aca8fa6f956f6691b784e67", size = 94973 }, + { url = "https://files.pythonhosted.org/packages/65/97/fc9bbc54ee13d33dc54a7fcf17b26368b18505500fc01e228c27b5222d80/charset_normalizer-3.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:707b82d19e65c9bd28b81dde95249b07bf9f5b90ebe1ef17d9b57473f8a64b7b", size = 102308 }, + { url = "https://files.pythonhosted.org/packages/bf/9b/08c0432272d77b04803958a4598a51e2a4b51c06640af8b8f0f908c18bf2/charset_normalizer-3.4.0-py3-none-any.whl", hash = "sha256:fe9f97feb71aa9896b81973a7bbada8c49501dc73e58a10fcef6663af95e5079", size = 49446 }, +] + +[[package]] +name = "chex" +version = "0.1.87" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "absl-py" }, + { name = "jax" }, + { name = "jaxlib" }, + { name = "numpy" }, + { name = "setuptools", marker = "python_full_version >= '3.12'" }, + { name = "toolz" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ba/8a/857474810b64ab135a0c3e594b0453c7f39f140757c4cd26a32bccadcbc4/chex-0.1.87.tar.gz", hash = "sha256:0096d89cc8d898bb521ef4bfbf5c24549022b0e5b301f529ab57238896fe6c5d", size = 90063 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/46/dd/c1ff2eb8fbf95a8ca804abb1cc3ce70b283ee7b4bc653c3abac245670400/chex-0.1.87-py3-none-any.whl", hash = "sha256:ce536475661fd96d21be0c1728ecdbedd03f8ff950c662dfc338c92ea782cb16", size = 99369 }, +] + +[[package]] +name = "click" +version = "8.1.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "platform_system == 'Windows'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/96/d3/f04c7bfcf5c1862a2a5b845c6b2b360488cf47af55dfa79c98f6a6bf98b5/click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de", size = 336121 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/2e/d53fa4befbf2cfa713304affc7ca780ce4fc1fd8710527771b58311a3229/click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28", size = 97941 }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335 }, +] + +[[package]] +name = "comm" +version = "0.2.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/a8/fb783cb0abe2b5fded9f55e5703015cdf1c9c85b3669087c538dd15a6a86/comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e", size = 6210 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/75/49e5bfe642f71f272236b5b2d2691cf915a7283cc0ceda56357b61daa538/comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3", size = 7180 }, +] + +[[package]] +name = "contourpy" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f5/f6/31a8f28b4a2a4fa0e01085e542f3081ab0588eff8e589d39d775172c9792/contourpy-1.3.0.tar.gz", hash = "sha256:7ffa0db17717a8ffb127efd0c95a4362d996b892c2904db72428d5b52e1938a4", size = 13464370 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6c/e0/be8dcc796cfdd96708933e0e2da99ba4bb8f9b2caa9d560a50f3f09a65f3/contourpy-1.3.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:880ea32e5c774634f9fcd46504bf9f080a41ad855f4fef54f5380f5133d343c7", size = 265366 }, + { url = "https://files.pythonhosted.org/packages/50/d6/c953b400219443535d412fcbbc42e7a5e823291236bc0bb88936e3cc9317/contourpy-1.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:76c905ef940a4474a6289c71d53122a4f77766eef23c03cd57016ce19d0f7b42", size = 249226 }, + { url = "https://files.pythonhosted.org/packages/6f/b4/6fffdf213ffccc28483c524b9dad46bb78332851133b36ad354b856ddc7c/contourpy-1.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92f8557cbb07415a4d6fa191f20fd9d2d9eb9c0b61d1b2f52a8926e43c6e9af7", size = 308460 }, + { url = "https://files.pythonhosted.org/packages/cf/6c/118fc917b4050f0afe07179a6dcbe4f3f4ec69b94f36c9e128c4af480fb8/contourpy-1.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:36f965570cff02b874773c49bfe85562b47030805d7d8360748f3eca570f4cab", size = 347623 }, + { url = "https://files.pythonhosted.org/packages/f9/a4/30ff110a81bfe3abf7b9673284d21ddce8cc1278f6f77393c91199da4c90/contourpy-1.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cacd81e2d4b6f89c9f8a5b69b86490152ff39afc58a95af002a398273e5ce589", size = 317761 }, + { url = "https://files.pythonhosted.org/packages/99/e6/d11966962b1aa515f5586d3907ad019f4b812c04e4546cc19ebf62b5178e/contourpy-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:69375194457ad0fad3a839b9e29aa0b0ed53bb54db1bfb6c3ae43d111c31ce41", size = 322015 }, + { url = "https://files.pythonhosted.org/packages/4d/e3/182383743751d22b7b59c3c753277b6aee3637049197624f333dac5b4c80/contourpy-1.3.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:7a52040312b1a858b5e31ef28c2e865376a386c60c0e248370bbea2d3f3b760d", size = 1262672 }, + { url = "https://files.pythonhosted.org/packages/78/53/974400c815b2e605f252c8fb9297e2204347d1755a5374354ee77b1ea259/contourpy-1.3.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:3faeb2998e4fcb256542e8a926d08da08977f7f5e62cf733f3c211c2a5586223", size = 1321688 }, + { url = "https://files.pythonhosted.org/packages/52/29/99f849faed5593b2926a68a31882af98afbeac39c7fdf7de491d9c85ec6a/contourpy-1.3.0-cp310-cp310-win32.whl", hash = "sha256:36e0cff201bcb17a0a8ecc7f454fe078437fa6bda730e695a92f2d9932bd507f", size = 171145 }, + { url = "https://files.pythonhosted.org/packages/a9/97/3f89bba79ff6ff2b07a3cbc40aa693c360d5efa90d66e914f0ff03b95ec7/contourpy-1.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:87ddffef1dbe5e669b5c2440b643d3fdd8622a348fe1983fad7a0f0ccb1cd67b", size = 216019 }, + { url = "https://files.pythonhosted.org/packages/b3/1f/9375917786cb39270b0ee6634536c0e22abf225825602688990d8f5c6c19/contourpy-1.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0fa4c02abe6c446ba70d96ece336e621efa4aecae43eaa9b030ae5fb92b309ad", size = 266356 }, + { url = "https://files.pythonhosted.org/packages/05/46/9256dd162ea52790c127cb58cfc3b9e3413a6e3478917d1f811d420772ec/contourpy-1.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:834e0cfe17ba12f79963861e0f908556b2cedd52e1f75e6578801febcc6a9f49", size = 250915 }, + { url = "https://files.pythonhosted.org/packages/e1/5d/3056c167fa4486900dfbd7e26a2fdc2338dc58eee36d490a0ed3ddda5ded/contourpy-1.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbc4c3217eee163fa3984fd1567632b48d6dfd29216da3ded3d7b844a8014a66", size = 310443 }, + { url = "https://files.pythonhosted.org/packages/ca/c2/1a612e475492e07f11c8e267ea5ec1ce0d89971be496c195e27afa97e14a/contourpy-1.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4865cd1d419e0c7a7bf6de1777b185eebdc51470800a9f42b9e9decf17762081", size = 348548 }, + { url = "https://files.pythonhosted.org/packages/45/cf/2c2fc6bb5874158277b4faf136847f0689e1b1a1f640a36d76d52e78907c/contourpy-1.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:303c252947ab4b14c08afeb52375b26781ccd6a5ccd81abcdfc1fafd14cf93c1", size = 319118 }, + { url = "https://files.pythonhosted.org/packages/03/33/003065374f38894cdf1040cef474ad0546368eea7e3a51d48b8a423961f8/contourpy-1.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637f674226be46f6ba372fd29d9523dd977a291f66ab2a74fbeb5530bb3f445d", size = 323162 }, + { url = "https://files.pythonhosted.org/packages/42/80/e637326e85e4105a802e42959f56cff2cd39a6b5ef68d5d9aee3ea5f0e4c/contourpy-1.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:76a896b2f195b57db25d6b44e7e03f221d32fe318d03ede41f8b4d9ba1bff53c", size = 1265396 }, + { url = "https://files.pythonhosted.org/packages/7c/3b/8cbd6416ca1bbc0202b50f9c13b2e0b922b64be888f9d9ee88e6cfabfb51/contourpy-1.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e1fd23e9d01591bab45546c089ae89d926917a66dceb3abcf01f6105d927e2cb", size = 1324297 }, + { url = "https://files.pythonhosted.org/packages/4d/2c/021a7afaa52fe891f25535506cc861c30c3c4e5a1c1ce94215e04b293e72/contourpy-1.3.0-cp311-cp311-win32.whl", hash = "sha256:d402880b84df3bec6eab53cd0cf802cae6a2ef9537e70cf75e91618a3801c20c", size = 171808 }, + { url = "https://files.pythonhosted.org/packages/8d/2f/804f02ff30a7fae21f98198828d0857439ec4c91a96e20cf2d6c49372966/contourpy-1.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:6cb6cc968059db9c62cb35fbf70248f40994dfcd7aa10444bbf8b3faeb7c2d67", size = 217181 }, + { url = "https://files.pythonhosted.org/packages/c9/92/8e0bbfe6b70c0e2d3d81272b58c98ac69ff1a4329f18c73bd64824d8b12e/contourpy-1.3.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:570ef7cf892f0afbe5b2ee410c507ce12e15a5fa91017a0009f79f7d93a1268f", size = 267838 }, + { url = "https://files.pythonhosted.org/packages/e3/04/33351c5d5108460a8ce6d512307690b023f0cfcad5899499f5c83b9d63b1/contourpy-1.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:da84c537cb8b97d153e9fb208c221c45605f73147bd4cadd23bdae915042aad6", size = 251549 }, + { url = "https://files.pythonhosted.org/packages/51/3d/aa0fe6ae67e3ef9f178389e4caaaa68daf2f9024092aa3c6032e3d174670/contourpy-1.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0be4d8425bfa755e0fd76ee1e019636ccc7c29f77a7c86b4328a9eb6a26d0639", size = 303177 }, + { url = "https://files.pythonhosted.org/packages/56/c3/c85a7e3e0cab635575d3b657f9535443a6f5d20fac1a1911eaa4bbe1aceb/contourpy-1.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9c0da700bf58f6e0b65312d0a5e695179a71d0163957fa381bb3c1f72972537c", size = 341735 }, + { url = "https://files.pythonhosted.org/packages/dd/8d/20f7a211a7be966a53f474bc90b1a8202e9844b3f1ef85f3ae45a77151ee/contourpy-1.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb8b141bb00fa977d9122636b16aa67d37fd40a3d8b52dd837e536d64b9a4d06", size = 314679 }, + { url = "https://files.pythonhosted.org/packages/6e/be/524e377567defac0e21a46e2a529652d165fed130a0d8a863219303cee18/contourpy-1.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3634b5385c6716c258d0419c46d05c8aa7dc8cb70326c9a4fb66b69ad2b52e09", size = 320549 }, + { url = "https://files.pythonhosted.org/packages/0f/96/fdb2552a172942d888915f3a6663812e9bc3d359d53dafd4289a0fb462f0/contourpy-1.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0dce35502151b6bd35027ac39ba6e5a44be13a68f55735c3612c568cac3805fd", size = 1263068 }, + { url = "https://files.pythonhosted.org/packages/2a/25/632eab595e3140adfa92f1322bf8915f68c932bac468e89eae9974cf1c00/contourpy-1.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:aea348f053c645100612b333adc5983d87be69acdc6d77d3169c090d3b01dc35", size = 1322833 }, + { url = "https://files.pythonhosted.org/packages/73/e3/69738782e315a1d26d29d71a550dbbe3eb6c653b028b150f70c1a5f4f229/contourpy-1.3.0-cp312-cp312-win32.whl", hash = "sha256:90f73a5116ad1ba7174341ef3ea5c3150ddf20b024b98fb0c3b29034752c8aeb", size = 172681 }, + { url = "https://files.pythonhosted.org/packages/0c/89/9830ba00d88e43d15e53d64931e66b8792b46eb25e2050a88fec4a0df3d5/contourpy-1.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:b11b39aea6be6764f84360fce6c82211a9db32a7c7de8fa6dd5397cf1d079c3b", size = 218283 }, + { url = "https://files.pythonhosted.org/packages/53/a1/d20415febfb2267af2d7f06338e82171824d08614084714fb2c1dac9901f/contourpy-1.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:3e1c7fa44aaae40a2247e2e8e0627f4bea3dd257014764aa644f319a5f8600e3", size = 267879 }, + { url = "https://files.pythonhosted.org/packages/aa/45/5a28a3570ff6218d8bdfc291a272a20d2648104815f01f0177d103d985e1/contourpy-1.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:364174c2a76057feef647c802652f00953b575723062560498dc7930fc9b1cb7", size = 251573 }, + { url = "https://files.pythonhosted.org/packages/39/1c/d3f51540108e3affa84f095c8b04f0aa833bb797bc8baa218a952a98117d/contourpy-1.3.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32b238b3b3b649e09ce9aaf51f0c261d38644bdfa35cbaf7b263457850957a84", size = 303184 }, + { url = "https://files.pythonhosted.org/packages/00/56/1348a44fb6c3a558c1a3a0cd23d329d604c99d81bf5a4b58c6b71aab328f/contourpy-1.3.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d51fca85f9f7ad0b65b4b9fe800406d0d77017d7270d31ec3fb1cc07358fdea0", size = 340262 }, + { url = "https://files.pythonhosted.org/packages/2b/23/00d665ba67e1bb666152131da07e0f24c95c3632d7722caa97fb61470eca/contourpy-1.3.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:732896af21716b29ab3e988d4ce14bc5133733b85956316fb0c56355f398099b", size = 313806 }, + { url = "https://files.pythonhosted.org/packages/5a/42/3cf40f7040bb8362aea19af9a5fb7b32ce420f645dd1590edcee2c657cd5/contourpy-1.3.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d73f659398a0904e125280836ae6f88ba9b178b2fed6884f3b1f95b989d2c8da", size = 319710 }, + { url = "https://files.pythonhosted.org/packages/05/32/f3bfa3fc083b25e1a7ae09197f897476ee68e7386e10404bdf9aac7391f0/contourpy-1.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c6c7c2408b7048082932cf4e641fa3b8ca848259212f51c8c59c45aa7ac18f14", size = 1264107 }, + { url = "https://files.pythonhosted.org/packages/1c/1e/1019d34473a736664f2439542b890b2dc4c6245f5c0d8cdfc0ccc2cab80c/contourpy-1.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f317576606de89da6b7e0861cf6061f6146ead3528acabff9236458a6ba467f8", size = 1322458 }, + { url = "https://files.pythonhosted.org/packages/22/85/4f8bfd83972cf8909a4d36d16b177f7b8bdd942178ea4bf877d4a380a91c/contourpy-1.3.0-cp313-cp313-win32.whl", hash = "sha256:31cd3a85dbdf1fc002280c65caa7e2b5f65e4a973fcdf70dd2fdcb9868069294", size = 172643 }, + { url = "https://files.pythonhosted.org/packages/cc/4a/fb3c83c1baba64ba90443626c228ca14f19a87c51975d3b1de308dd2cf08/contourpy-1.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:4553c421929ec95fb07b3aaca0fae668b2eb5a5203d1217ca7c34c063c53d087", size = 218301 }, + { url = "https://files.pythonhosted.org/packages/76/65/702f4064f397821fea0cb493f7d3bc95a5d703e20954dce7d6d39bacf378/contourpy-1.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:345af746d7766821d05d72cb8f3845dfd08dd137101a2cb9b24de277d716def8", size = 278972 }, + { url = "https://files.pythonhosted.org/packages/80/85/21f5bba56dba75c10a45ec00ad3b8190dbac7fd9a8a8c46c6116c933e9cf/contourpy-1.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3bb3808858a9dc68f6f03d319acd5f1b8a337e6cdda197f02f4b8ff67ad2057b", size = 263375 }, + { url = "https://files.pythonhosted.org/packages/0a/64/084c86ab71d43149f91ab3a4054ccf18565f0a8af36abfa92b1467813ed6/contourpy-1.3.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:420d39daa61aab1221567b42eecb01112908b2cab7f1b4106a52caaec8d36973", size = 307188 }, + { url = "https://files.pythonhosted.org/packages/3d/ff/d61a4c288dc42da0084b8d9dc2aa219a850767165d7d9a9c364ff530b509/contourpy-1.3.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4d63ee447261e963af02642ffcb864e5a2ee4cbfd78080657a9880b8b1868e18", size = 345644 }, + { url = "https://files.pythonhosted.org/packages/ca/aa/00d2313d35ec03f188e8f0786c2fc61f589306e02fdc158233697546fd58/contourpy-1.3.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:167d6c890815e1dac9536dca00828b445d5d0df4d6a8c6adb4a7ec3166812fa8", size = 317141 }, + { url = "https://files.pythonhosted.org/packages/8d/6a/b5242c8cb32d87f6abf4f5e3044ca397cb1a76712e3fa2424772e3ff495f/contourpy-1.3.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:710a26b3dc80c0e4febf04555de66f5fd17e9cf7170a7b08000601a10570bda6", size = 323469 }, + { url = "https://files.pythonhosted.org/packages/6f/a6/73e929d43028a9079aca4bde107494864d54f0d72d9db508a51ff0878593/contourpy-1.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:75ee7cb1a14c617f34a51d11fa7524173e56551646828353c4af859c56b766e2", size = 1260894 }, + { url = "https://files.pythonhosted.org/packages/2b/1e/1e726ba66eddf21c940821df8cf1a7d15cb165f0682d62161eaa5e93dae1/contourpy-1.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:33c92cdae89ec5135d036e7218e69b0bb2851206077251f04a6c4e0e21f03927", size = 1314829 }, + { url = "https://files.pythonhosted.org/packages/d1/09/60e486dc2b64c94ed33e58dcfb6f808192c03dfc5574c016218b9b7680dc/contourpy-1.3.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:fe41b41505a5a33aeaed2a613dccaeaa74e0e3ead6dd6fd3a118fb471644fd6c", size = 261886 }, + { url = "https://files.pythonhosted.org/packages/19/20/b57f9f7174fcd439a7789fb47d764974ab646fa34d1790551de386457a8e/contourpy-1.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eca7e17a65f72a5133bdbec9ecf22401c62bcf4821361ef7811faee695799779", size = 311008 }, + { url = "https://files.pythonhosted.org/packages/74/fc/5040d42623a1845d4f17a418e590fd7a79ae8cb2bad2b2f83de63c3bdca4/contourpy-1.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:1ec4dc6bf570f5b22ed0d7efba0dfa9c5b9e0431aeea7581aa217542d9e809a4", size = 215690 }, +] + +[[package]] +name = "corner" +version = "2.2.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "matplotlib" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5d/12/b738e24c8241c9be1566009d6d6fe78f26933e9d17fa4d4ac72eff43ae74/corner-2.2.2.tar.gz", hash = "sha256:4bc79f3b6778c270103f0926e64ef2606c48c3b6f92daf5382fc4babf5d608d1", size = 19906 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e8/c0/dca9f4801daa879f3bd483299e4f3829fc73a405641ebd12888d21cf98ec/corner-2.2.2-py3-none-any.whl", hash = "sha256:e7577cdb59cfa304effa243b0c7ac0e3777030d3dc2f2e217a387e87a47074bb", size = 15860 }, +] + +[[package]] +name = "cryptography" +version = "43.0.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "platform_python_implementation != 'PyPy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/de/ba/0664727028b37e249e73879348cc46d45c5c1a2a2e81e8166462953c5755/cryptography-43.0.1.tar.gz", hash = "sha256:203e92a75716d8cfb491dc47c79e17d0d9207ccffcbcb35f598fbe463ae3444d", size = 686927 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/58/28/b92c98a04ba762f8cdeb54eba5c4c84e63cac037a7c5e70117d337b15ad6/cryptography-43.0.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:8385d98f6a3bf8bb2d65a73e17ed87a3ba84f6991c155691c51112075f9ffc5d", size = 6223222 }, + { url = "https://files.pythonhosted.org/packages/33/13/1193774705783ba364121aa2a60132fa31a668b8ababd5edfa1662354ccd/cryptography-43.0.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27e613d7077ac613e399270253259d9d53872aaf657471473ebfc9a52935c062", size = 3794751 }, + { url = "https://files.pythonhosted.org/packages/5e/4b/39bb3c4c8cfb3e94e736b8d8859ce5c81536e91a1033b1d26770c4249000/cryptography-43.0.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68aaecc4178e90719e95298515979814bda0cbada1256a4485414860bd7ab962", size = 3981827 }, + { url = "https://files.pythonhosted.org/packages/ce/dc/1471d4d56608e1013237af334b8a4c35d53895694fbb73882d1c4fd3f55e/cryptography-43.0.1-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:de41fd81a41e53267cb020bb3a7212861da53a7d39f863585d13ea11049cf277", size = 3780034 }, + { url = "https://files.pythonhosted.org/packages/ad/43/7a9920135b0d5437cc2f8f529fa757431eb6a7736ddfadfdee1cc5890800/cryptography-43.0.1-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:f98bf604c82c416bc829e490c700ca1553eafdf2912a91e23a79d97d9801372a", size = 3993407 }, + { url = "https://files.pythonhosted.org/packages/cc/42/9ab8467af6c0b76f3d9b8f01d1cf25b9c9f3f2151f4acfab888d21c55a72/cryptography-43.0.1-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:61ec41068b7b74268fa86e3e9e12b9f0c21fcf65434571dbb13d954bceb08042", size = 3886457 }, + { url = "https://files.pythonhosted.org/packages/a4/65/430509e31700286ec02868a2457d2111d03ccefc20349d24e58d171ae0a7/cryptography-43.0.1-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:014f58110f53237ace6a408b5beb6c427b64e084eb451ef25a28308270086494", size = 4081499 }, + { url = "https://files.pythonhosted.org/packages/bb/18/a04b6467e6e09df8c73b91dcee8878f4a438a43a3603dc3cd6f8003b92d8/cryptography-43.0.1-cp37-abi3-win32.whl", hash = "sha256:2bd51274dcd59f09dd952afb696bf9c61a7a49dfc764c04dd33ef7a6b502a1e2", size = 2616504 }, + { url = "https://files.pythonhosted.org/packages/cc/73/0eacbdc437202edcbdc07f3576ed8fb8b0ab79d27bf2c5d822d758a72faa/cryptography-43.0.1-cp37-abi3-win_amd64.whl", hash = "sha256:666ae11966643886c2987b3b721899d250855718d6d9ce41b521252a17985f4d", size = 3067456 }, + { url = "https://files.pythonhosted.org/packages/8a/b6/bc54b371f02cffd35ff8dc6baba88304d7cf8e83632566b4b42e00383e03/cryptography-43.0.1-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:ac119bb76b9faa00f48128b7f5679e1d8d437365c5d26f1c2c3f0da4ce1b553d", size = 6225263 }, + { url = "https://files.pythonhosted.org/packages/00/0e/8217e348a1fa417ec4c78cd3cdf24154f5e76fd7597343a35bd403650dfd/cryptography-43.0.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1bbcce1a551e262dfbafb6e6252f1ae36a248e615ca44ba302df077a846a8806", size = 3794368 }, + { url = "https://files.pythonhosted.org/packages/3d/ed/38b6be7254d8f7251fde8054af597ee8afa14f911da67a9410a45f602fc3/cryptography-43.0.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:58d4e9129985185a06d849aa6df265bdd5a74ca6e1b736a77959b498e0505b85", size = 3981750 }, + { url = "https://files.pythonhosted.org/packages/64/f3/b7946c3887cf7436f002f4cbb1e6aec77b8d299b86be48eeadfefb937c4b/cryptography-43.0.1-cp39-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:d03a475165f3134f773d1388aeb19c2d25ba88b6a9733c5c590b9ff7bbfa2e0c", size = 3778925 }, + { url = "https://files.pythonhosted.org/packages/ac/7e/ebda4dd4ae098a0990753efbb4b50954f1d03003846b943ea85070782da7/cryptography-43.0.1-cp39-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:511f4273808ab590912a93ddb4e3914dfd8a388fed883361b02dea3791f292e1", size = 3993152 }, + { url = "https://files.pythonhosted.org/packages/43/f6/feebbd78a3e341e3913846a3bb2c29d0b09b1b3af1573c6baabc2533e147/cryptography-43.0.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:80eda8b3e173f0f247f711eef62be51b599b5d425c429b5d4ca6a05e9e856baa", size = 3886392 }, + { url = "https://files.pythonhosted.org/packages/bd/4c/ab0b9407d5247576290b4fd8abd06b7f51bd414f04eef0f2800675512d61/cryptography-43.0.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:38926c50cff6f533f8a2dae3d7f19541432610d114a70808f0926d5aaa7121e4", size = 4082606 }, + { url = "https://files.pythonhosted.org/packages/05/36/e532a671998d6fcfdb9122da16434347a58a6bae9465e527e450e0bc60a5/cryptography-43.0.1-cp39-abi3-win32.whl", hash = "sha256:a575913fb06e05e6b4b814d7f7468c2c660e8bb16d8d5a1faf9b33ccc569dd47", size = 2617948 }, + { url = "https://files.pythonhosted.org/packages/b3/c6/c09cee6968add5ff868525c3815e5dccc0e3c6e89eec58dc9135d3c40e88/cryptography-43.0.1-cp39-abi3-win_amd64.whl", hash = "sha256:d75601ad10b059ec832e78823b348bfa1a59f6b8d545db3a24fd44362a1564cb", size = 3070445 }, + { url = "https://files.pythonhosted.org/packages/18/23/4175dcd935e1649865e1af7bd0b827cc9d9769a586dcc84f7cbe96839086/cryptography-43.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ea25acb556320250756e53f9e20a4177515f012c9eaea17eb7587a8c4d8ae034", size = 3152694 }, + { url = "https://files.pythonhosted.org/packages/ea/45/967da50269954b993d4484bf85026c7377bd551651ebdabba94905972556/cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c1332724be35d23a854994ff0b66530119500b6053d0bd3363265f7e5e77288d", size = 3713077 }, + { url = "https://files.pythonhosted.org/packages/df/e6/ccd29a1f9a6b71294e1e9f530c4d779d5dd37c8bb736c05d5fb6d98a971b/cryptography-43.0.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:fba1007b3ef89946dbbb515aeeb41e30203b004f0b4b00e5e16078b518563289", size = 3915597 }, + { url = "https://files.pythonhosted.org/packages/a2/80/fb7d668f1be5e4443b7ac191f68390be24f7c2ebd36011741f62c7645eb2/cryptography-43.0.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:5b43d1ea6b378b54a1dc99dd8a2b5be47658fe9a7ce0a58ff0b55f4b43ef2b84", size = 2989208 }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321 }, +] + +[[package]] +name = "dateparser" +version = "1.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, + { name = "pytz" }, + { name = "regex" }, + { name = "tzlocal" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/1a/b2/f6b29ab17d7959eb1a0a5c64f5011dc85051ad4e25e401cbddcc515db00f/dateparser-1.2.0.tar.gz", hash = "sha256:7975b43a4222283e0ae15be7b4999d08c9a70e2d378ac87385b1ccf2cffbbb30", size = 307260 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a4/29/db12aa4dda81580be1999824a689bd52aa40061fc12c9ccdc3feab5ea718/dateparser-1.2.0-py2.py3-none-any.whl", hash = "sha256:0b21ad96534e562920a0083e97fd45fa959882d4162acc358705144520a35830", size = 294995 }, +] + +[[package]] +name = "debugpy" +version = "1.8.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6d/00/5a8b5dc8f52617c5e41845e26290ebea1ba06377cc08155b6d245c27b386/debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e", size = 4957835 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/46/50/1850a5a0cab6f65a21e452166ec60bac5f8a995184d17e18bb9dc3789c72/debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b", size = 2090182 }, + { url = "https://files.pythonhosted.org/packages/87/51/ef4d5c55c06689b377678bdee870e3df8eb2a3d9cf0e618b4d7255413c8a/debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9", size = 3547569 }, + { url = "https://files.pythonhosted.org/packages/eb/df/a4ea1f95022f93522b59b71ec42d6703abe3e0bee753070118816555fee9/debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55", size = 5153144 }, + { url = "https://files.pythonhosted.org/packages/47/f7/912408b69e83659bd62fa29ebb7984efe81aed4f5e08bfe10e31a1dc3c3a/debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037", size = 5185605 }, + { url = "https://files.pythonhosted.org/packages/f6/0a/4a4516ef4c07891542cb25620085507cab3c6b23a42b5630c17788fff83e/debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f", size = 2204794 }, + { url = "https://files.pythonhosted.org/packages/46/6f/2bb0bba20b8b74b7c341379dd99275cf6aa7722c1948fa99728716aad1b9/debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0", size = 3122160 }, + { url = "https://files.pythonhosted.org/packages/c0/ce/833351375cef971f0caa63fa82adf3f6949ad85410813026a4a436083a71/debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2", size = 5078675 }, + { url = "https://files.pythonhosted.org/packages/7d/e1/e9ac2d546143a4defbaa2e609e173c912fb989cdfb5385c9771770a6bf5c/debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211", size = 5102927 }, + { url = "https://files.pythonhosted.org/packages/59/4b/9f52ca1a799601a10cd2673503658bd8c8ecc4a7a43302ee29cf062474ec/debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706", size = 2529803 }, + { url = "https://files.pythonhosted.org/packages/80/79/8bba39190d2ea17840925d287f1c6c3a7c60b58f5090444e9ecf176c540f/debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2", size = 4170911 }, + { url = "https://files.pythonhosted.org/packages/3b/19/5b3d312936db8eb281310fa27903459328ed722d845d594ba5feaeb2f0b3/debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca", size = 5195476 }, + { url = "https://files.pythonhosted.org/packages/9f/49/ad20b29f8c921fd5124530d3d39b8f2077efd51b71339a2eff02bba693e9/debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39", size = 5235031 }, + { url = "https://files.pythonhosted.org/packages/41/95/29b247518d0a6afdb5249f5d05743c9c5bfaf4bd13a85b81cb5e1dc65837/debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40", size = 2517557 }, + { url = "https://files.pythonhosted.org/packages/4d/93/026e2000a0740e2f54b198f8dc317accf3a70b6524b2b15fa8e6eca74414/debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7", size = 4162703 }, + { url = "https://files.pythonhosted.org/packages/c3/92/a48e653b19a171434290ecdc5935b7a292a65488139c5271d6d0eceeb0f1/debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba", size = 5195220 }, + { url = "https://files.pythonhosted.org/packages/4e/b3/dc3c5527edafcd1a6d0f8c4ecc6c5c9bc431f77340cf4193328e98f0ac38/debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa", size = 5235333 }, + { url = "https://files.pythonhosted.org/packages/51/b1/a0866521c71a6ae3d3ca320e74835163a4671b1367ba360a55a0a51e5a91/debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae", size = 5210683 }, +] + +[[package]] +name = "decorator" +version = "5.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/0c/8d907af351aa16b42caae42f9d6aa37b900c67308052d10fdce809f8d952/decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330", size = 35016 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d5/50/83c593b07763e1161326b3b8c6686f0f4b0f24d5526546bee538c89837d6/decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186", size = 9073 }, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0f/d5/c66da9b79e5bdb124974bfe172b4daf3c984ebd9c2a06e2b8a4dc7331c72/defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69", size = 75520 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61", size = 25604 }, +] + +[[package]] +name = "docstring-parser" +version = "0.16" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/08/12/9c22a58c0b1e29271051222d8906257616da84135af9ed167c9e28f85cb3/docstring_parser-0.16.tar.gz", hash = "sha256:538beabd0af1e2db0146b6bd3caa526c35a34d61af9fd2887f3a8a27a739aa6e", size = 26565 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d5/7c/e9fcff7623954d86bdc17782036cbf715ecab1bec4847c008557affe1ca8/docstring_parser-0.16-py3-none-any.whl", hash = "sha256:bf0a1387354d3691d102edef7ec124f219ef639982d096e26e3b60aeffa90637", size = 36533 }, +] + +[[package]] +name = "dotmap" +version = "1.3.30" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/bc/68/c186606e4f2bf731abd18044ea201e70c3c244bf468f41368820d197fca5/dotmap-1.3.30.tar.gz", hash = "sha256:5821a7933f075fb47563417c0e92e0b7c031158b4c9a6a7e56163479b658b368", size = 12391 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4d/f9/976d6813c160d6c89196d81e9466dca1503d20e609d8751f3536daf37ec6/dotmap-1.3.30-py3-none-any.whl", hash = "sha256:bd9fa15286ea2ad899a4d1dc2445ed85a1ae884a42effb87c89a6ecce71243c6", size = 11464 }, +] + +[[package]] +name = "dqsegdb2" +version = "1.2.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "igwn-auth-utils" }, + { name = "ligo-segments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5d/aa/b4bb24735f0b4f167b7ce3f68ec3d6682cd49ea90130b73b98c544774372/dqsegdb2-1.2.1.tar.gz", hash = "sha256:6a222dbb7024de6de845ba5ad3583859cecf8ed5ce584ff5db6f01581b821f81", size = 35041 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ab/7e/097ec2c8da84074bafae6ceca298b638eacf82510484b0d03ea7c8f182a2/dqsegdb2-1.2.1-py3-none-any.whl", hash = "sha256:4a6eb2ad66bcd596f7eebd18229674b3ae262a54480c75ac135755b0a5e8f783", size = 25089 }, +] + +[[package]] +name = "equinox" +version = "0.11.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jax" }, + { name = "jaxtyping" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/3b/48/ed7ba0849bea18b8be49f471b8e597ca6e5975f75ed05c3be84c1e0ef7c4/equinox-0.11.7.tar.gz", hash = "sha256:96e0216a9d822ec4b1465b0cbfbab14a36fb7e7d62c55f521287db3aaaa251be", size = 139909 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/3f/2fa4627a902a38cd836aa8f7e5a0753114bb23d6b4d2a73784dd9f5ff2e6/equinox-0.11.7-py3-none-any.whl", hash = "sha256:1177354e1795061fbad71535fe54096d8887dc059b4ab7d400fea2d47dfaa283", size = 178416 }, +] + +[[package]] +name = "etils" +version = "1.9.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/19/e0/d8e99c24e7c55a9cb6a405fa502c059f77ed789f916bffbcaa8e1cc65f2d/etils-1.9.4.tar.gz", hash = "sha256:fad950414f0a1ca58c70c70915b0014f9953dd9bcf8aa951a0f75ff9becbeb24", size = 103161 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2e/35/7f8fcc9c23a504cf09e2795164eeb39a39ade1b2c7c8724ee207b2019ae6/etils-1.9.4-py3-none-any.whl", hash = "sha256:4387e7a4911a3b5cc4b92b99a9211386d176b43bae1dac8e2fe345fc2cb95e4b", size = 164341 }, +] + +[package.optional-dependencies] +epath = [ + { name = "fsspec" }, + { name = "importlib-resources" }, + { name = "typing-extensions" }, + { name = "zipp" }, +] +epy = [ + { name = "typing-extensions" }, +] + +[[package]] +name = "evosax" +version = "0.1.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "chex" }, + { name = "dotmap" }, + { name = "flax" }, + { name = "jax" }, + { name = "jaxlib" }, + { name = "matplotlib" }, + { name = "numpy" }, + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/54/1c/42c78cae403ee993a99f6f5645cb7202111beac80a5fd2dd2f31c52f823e/evosax-0.1.6.tar.gz", hash = "sha256:bc3dd032191f2f878b08127e0c88d270d08fc95e80b379509b14dc265f29484b", size = 196800 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/24/f8/a58890d615e548de5003a38636d8986e226805bbcb27aab206e1c8430f57/evosax-0.1.6-py3-none-any.whl", hash = "sha256:195145d68c67f5f1de9c580b6f248f624ac9d089de628e67665f7b3616d638e4", size = 240393 }, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/09/35/2495c4ac46b980e4ca1f6ad6db102322ef3ad2410b79fdde159a4b0f3b92/exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc", size = 28883 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/02/cc/b7e31358aac6ed1ef2bb790a9746ac2c69bcb3c8588b41616914eb106eaf/exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b", size = 16453 }, +] + +[[package]] +name = "executing" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8c/e3/7d45f492c2c4a0e8e0fad57d081a7c8a0286cdd86372b070cca1ec0caa1e/executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab", size = 977485 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b5/fd/afcd0496feca3276f509df3dbd5dae726fcc756f1a08d9e25abe1733f962/executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf", size = 25805 }, +] + +[[package]] +name = "fastjsonschema" +version = "2.20.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/03/3f/3ad5e7be13b4b8b55f4477141885ab2364f65d5f6ad5f7a9daffd634d066/fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23", size = 373056 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6d/ca/086311cdfc017ec964b2436fe0c98c1f4efcb7e4c328956a22456e497655/fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a", size = 23543 }, +] + +[[package]] +name = "flax" +version = "0.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jax" }, + { name = "msgpack" }, + { name = "numpy", marker = "python_full_version >= '3.11'" }, + { name = "optax" }, + { name = "orbax-checkpoint" }, + { name = "pyyaml" }, + { name = "rich" }, + { name = "tensorstore" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e2/21/ee8b1fb88974e768bcf281cb83c76875c736aa8a3981ce133f685738e945/flax-0.9.0.tar.gz", hash = "sha256:8b7f361eed0f5324e81f9dc8d02ea53da5f993d7c2e37e7aa5b37d3f6331dd53", size = 3073134 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e0/e8/e0aa0c81a4b2c14bcaf7566d865039d4ae39ed604b8ba90708f8faedbda5/flax-0.9.0-py3-none-any.whl", hash = "sha256:12cd8f7162165ddd56877fb1cd9a4fcb47a31569e4c5343eeb59a36369fa2cfe", size = 780735 }, +] + +[[package]] +name = "flowmc" +version = "0.3.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "corner" }, + { name = "equinox" }, + { name = "evosax" }, + { name = "jax" }, + { name = "jaxlib" }, + { name = "optax" }, + { name = "tqdm" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/27/bf/18ecaceaa43989123413b3ebfa0e9dbc9c29759ab748938f6d1fe44cae80/flowmc-0.3.4.tar.gz", hash = "sha256:ad64011efdb58ff624b176bc0853aee549fdeb37e5a7a7081580eb5009b2945f", size = 29392 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/10/93/8ed7610e900278a6cfc8edf1ada5fa13032bec88296b27ee7aa57273005d/flowMC-0.3.4-py3-none-any.whl", hash = "sha256:b65c2cc892c07056ea51f1056a4ef4df8d8075b924a76f242efb5b37654716bf", size = 37730 }, +] + +[[package]] +name = "fonttools" +version = "4.54.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/11/1d/70b58e342e129f9c0ce030029fb4b2b0670084bbbfe1121d008f6a1e361c/fonttools-4.54.1.tar.gz", hash = "sha256:957f669d4922f92c171ba01bef7f29410668db09f6c02111e22b2bce446f3285", size = 3463867 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/db/f9/285c9a2d0e86b9bf2babfe19bec00502361fda56cea144d6a269ab9a32e6/fonttools-4.54.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7ed7ee041ff7b34cc62f07545e55e1468808691dddfd315d51dd82a6b37ddef2", size = 2766970 }, + { url = "https://files.pythonhosted.org/packages/2f/9a/9d899e7ae55b0dd30632e6ca36c0f5fa1205b1b096ec171c9be903673058/fonttools-4.54.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41bb0b250c8132b2fcac148e2e9198e62ff06f3cc472065dff839327945c5882", size = 2254639 }, + { url = "https://files.pythonhosted.org/packages/16/6f/b99e0c347732fb003077a2cff38c26f381969b74329aa5597e344d540fe1/fonttools-4.54.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7965af9b67dd546e52afcf2e38641b5be956d68c425bef2158e95af11d229f10", size = 4574346 }, + { url = "https://files.pythonhosted.org/packages/e5/12/9a45294a7c4520cc32936edd15df1d5c24af701d2f5f51070a9a43d7664b/fonttools-4.54.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:278913a168f90d53378c20c23b80f4e599dca62fbffae4cc620c8eed476b723e", size = 4630045 }, + { url = "https://files.pythonhosted.org/packages/64/52/ba4f00eb6003e4089264cd9ce126cddec2b39c78f1ab01be9dc389a197ca/fonttools-4.54.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:0e88e3018ac809b9662615072dcd6b84dca4c2d991c6d66e1970a112503bba7e", size = 4569527 }, + { url = "https://files.pythonhosted.org/packages/41/ff/85f93a14c8acf978f332508f980dcaff5ed5f0cf284371eb101a78f0b1f4/fonttools-4.54.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:4aa4817f0031206e637d1e685251ac61be64d1adef111060df84fdcbc6ab6c44", size = 4741677 }, + { url = "https://files.pythonhosted.org/packages/6f/f0/06ea7d9f8b7b6d4758a50271517db04039c4c6da8fa0475d417e005624d0/fonttools-4.54.1-cp310-cp310-win32.whl", hash = "sha256:7e3b7d44e18c085fd8c16dcc6f1ad6c61b71ff463636fcb13df7b1b818bd0c02", size = 2166797 }, + { url = "https://files.pythonhosted.org/packages/71/73/545c817e34b8c34585291951722e1a5ae579380deb009576d9d244b13ab0/fonttools-4.54.1-cp310-cp310-win_amd64.whl", hash = "sha256:dd9cc95b8d6e27d01e1e1f1fae8559ef3c02c76317da650a19047f249acd519d", size = 2210552 }, + { url = "https://files.pythonhosted.org/packages/aa/2c/8b5d82fe2d9c7f260fb73121418f5e07d4e38c329ea3886a5b0e55586113/fonttools-4.54.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:5419771b64248484299fa77689d4f3aeed643ea6630b2ea750eeab219588ba20", size = 2768112 }, + { url = "https://files.pythonhosted.org/packages/37/2e/f94118b92f7b6a9ec93840101b64bfdd09f295b266133857e8e852a5c35c/fonttools-4.54.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:301540e89cf4ce89d462eb23a89464fef50915255ece765d10eee8b2bf9d75b2", size = 2254739 }, + { url = "https://files.pythonhosted.org/packages/45/4b/8a32f56a13e78256192f77d6b65583c43538c7955f5420887bb574b91ddf/fonttools-4.54.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76ae5091547e74e7efecc3cbf8e75200bc92daaeb88e5433c5e3e95ea8ce5aa7", size = 4879772 }, + { url = "https://files.pythonhosted.org/packages/96/13/748b7f7239893ff0796de11074b0ad8aa4c3da2d9f4d79a128b0b16147f3/fonttools-4.54.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:82834962b3d7c5ca98cb56001c33cf20eb110ecf442725dc5fdf36d16ed1ab07", size = 4927686 }, + { url = "https://files.pythonhosted.org/packages/7c/82/91bc5a378b4a0593fa90ea706f68ce7e9e871c6873e0d91e134d107758db/fonttools-4.54.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d26732ae002cc3d2ecab04897bb02ae3f11f06dd7575d1df46acd2f7c012a8d8", size = 4890789 }, + { url = "https://files.pythonhosted.org/packages/ea/ca/82be5d4f8b78405cdb3f7f3f1316af5e8db93216121f19da9f684a35beee/fonttools-4.54.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:58974b4987b2a71ee08ade1e7f47f410c367cdfc5a94fabd599c88165f56213a", size = 5061351 }, + { url = "https://files.pythonhosted.org/packages/da/2f/fd6e1b01c80c473c3ac52492dcf8d26cdf5f4a89b4f30875ecfbda55e7ff/fonttools-4.54.1-cp311-cp311-win32.whl", hash = "sha256:ab774fa225238986218a463f3fe151e04d8c25d7de09df7f0f5fce27b1243dbc", size = 2166210 }, + { url = "https://files.pythonhosted.org/packages/63/f1/3a081cd047d83b5966cb0d7ef3fea929ee6eddeb94d8fbfdb2a19bd60cc7/fonttools-4.54.1-cp311-cp311-win_amd64.whl", hash = "sha256:07e005dc454eee1cc60105d6a29593459a06321c21897f769a281ff2d08939f6", size = 2211946 }, + { url = "https://files.pythonhosted.org/packages/27/b6/f9d365932dcefefdcc794985f8846471e60932070c557e0f66ed195fccec/fonttools-4.54.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:54471032f7cb5fca694b5f1a0aaeba4af6e10ae989df408e0216f7fd6cdc405d", size = 2761873 }, + { url = "https://files.pythonhosted.org/packages/67/9d/cfbfe36e5061a8f68b154454ba2304eb01f40d4ba9b63e41d9058909baed/fonttools-4.54.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8fa92cb248e573daab8d032919623cc309c005086d743afb014c836636166f08", size = 2251828 }, + { url = "https://files.pythonhosted.org/packages/90/41/5573e074739efd9227dd23647724f01f6f07ad062fe09d02e91c5549dcf7/fonttools-4.54.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a911591200114969befa7f2cb74ac148bce5a91df5645443371aba6d222e263", size = 4792544 }, + { url = "https://files.pythonhosted.org/packages/08/07/aa85cc62abcc940b25d14b542cf585eebf4830032a7f6a1395d696bb3231/fonttools-4.54.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93d458c8a6a354dc8b48fc78d66d2a8a90b941f7fec30e94c7ad9982b1fa6bab", size = 4875892 }, + { url = "https://files.pythonhosted.org/packages/47/23/c5726c2615446c498a976bed21c35a242a97eee39930a2655d616ca885cc/fonttools-4.54.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5eb2474a7c5be8a5331146758debb2669bf5635c021aee00fd7c353558fc659d", size = 4769822 }, + { url = "https://files.pythonhosted.org/packages/8f/7b/87f7f7d35e0732ac67422dfa6f05e2b568fb6ca2dcd7f3e4f500293cfd75/fonttools-4.54.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c9c563351ddc230725c4bdf7d9e1e92cbe6ae8553942bd1fb2b2ff0884e8b714", size = 5029455 }, + { url = "https://files.pythonhosted.org/packages/e0/09/241aa498587889576838aa73c78d22b70ce06970807a5475d372baa7ccb7/fonttools-4.54.1-cp312-cp312-win32.whl", hash = "sha256:fdb062893fd6d47b527d39346e0c5578b7957dcea6d6a3b6794569370013d9ac", size = 2154411 }, + { url = "https://files.pythonhosted.org/packages/b9/0a/a57caaff3bc880779317cb157e5b49dc47fad54effe027016abd355b0651/fonttools-4.54.1-cp312-cp312-win_amd64.whl", hash = "sha256:e4564cf40cebcb53f3dc825e85910bf54835e8a8b6880d59e5159f0f325e637e", size = 2200412 }, + { url = "https://files.pythonhosted.org/packages/05/3d/cc515cae84a11d696f2cb7c139a90997b15f02e2e97ec09a5d79302cbcd7/fonttools-4.54.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6e37561751b017cf5c40fce0d90fd9e8274716de327ec4ffb0df957160be3bff", size = 2749174 }, + { url = "https://files.pythonhosted.org/packages/03/03/05d4b22d1a674d066380657f60bbc0eda2d206446912e676d1a33a206878/fonttools-4.54.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:357cacb988a18aace66e5e55fe1247f2ee706e01debc4b1a20d77400354cddeb", size = 2246267 }, + { url = "https://files.pythonhosted.org/packages/52/c3/bb6086adb675e8b0963a7dbb7769e7118c95b687dd318cd660aefd4b4c8c/fonttools-4.54.1-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e953cc0bddc2beaf3a3c3b5dd9ab7554677da72dfaf46951e193c9653e515a", size = 4855090 }, + { url = "https://files.pythonhosted.org/packages/80/a1/d7192b6a104e3f9ea8e5b1c3463a6240399f0fa826a782eff636cbe0495a/fonttools-4.54.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:58d29b9a294573d8319f16f2f79e42428ba9b6480442fa1836e4eb89c4d9d61c", size = 5005449 }, + { url = "https://files.pythonhosted.org/packages/5a/6c/ecfd5c6cd8c9006e85b128d073af26bb263e8aa47506374cb14b25bcf65f/fonttools-4.54.1-cp313-cp313-win32.whl", hash = "sha256:9ef1b167e22709b46bf8168368b7b5d3efeaaa746c6d39661c1b4405b6352e58", size = 2152496 }, + { url = "https://files.pythonhosted.org/packages/63/da/f7a1d837de419e3d4cccbd0dbf53c7399f610f65ceb9bcbf2480f3ae7950/fonttools-4.54.1-cp313-cp313-win_amd64.whl", hash = "sha256:262705b1663f18c04250bd1242b0515d3bbae177bee7752be67c979b7d47f43d", size = 2197257 }, + { url = "https://files.pythonhosted.org/packages/57/5e/de2e6e51cb6894f2f2bc2641f6c845561361b622e96df3cca04df77222c9/fonttools-4.54.1-py3-none-any.whl", hash = "sha256:37cddd62d83dc4f72f7c3f3c2bcf2697e89a30efb152079896544a93907733bd", size = 1096920 }, +] + +[[package]] +name = "fsspec" +version = "2024.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/62/7c/12b0943011daaaa9c35c2a2e22e5eb929ac90002f08f1259d69aedad84de/fsspec-2024.9.0.tar.gz", hash = "sha256:4b0afb90c2f21832df142f292649035d80b421f60a9e1c027802e5a0da2b04e8", size = 286206 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1d/a0/6aaea0c2fbea2f89bfd5db25fb1e3481896a423002ebe4e55288907a97a3/fsspec-2024.9.0-py3-none-any.whl", hash = "sha256:a0947d552d8a6efa72cc2c730b12c41d043509156966cca4fb157b0f2a0c574b", size = 179253 }, +] + +[[package]] +name = "ghp-import" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d9/29/d40217cbe2f6b1359e00c6c307bb3fc876ba74068cbab3dde77f03ca0dc4/ghp-import-2.1.0.tar.gz", hash = "sha256:9c535c4c61193c2df8871222567d7fd7e5014d835f97dc7b7439069e2413d343", size = 10943 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f7/ec/67fbef5d497f86283db54c22eec6f6140243aae73265799baaaa19cd17fb/ghp_import-2.1.0-py3-none-any.whl", hash = "sha256:8337dd7b50877f163d4c0289bc1f1c7f127550241988d568c1db512c4324a619", size = 11034 }, +] + +[[package]] +name = "griffe" +version = "1.4.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/81/65/f708fd15b91182e8928f5bf335255028c22f5d8a181e8819f3fa8f0230f4/griffe-1.4.1.tar.gz", hash = "sha256:911a201b01dc92e08c0e84c38a301e9da5ec067f00e7d9f2e39bc24dbfa3c176", size = 381239 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/eb/fc/570a1e503e19be24c5642ea8b93f23e3eef1dfa930e761cab72dedc2c2db/griffe-1.4.1-py3-none-any.whl", hash = "sha256:84295ee0b27743bd880aea75632830ef02ded65d16124025e4c263bb826ab645", size = 126956 }, +] + +[[package]] +name = "gwdatafind" +version = "1.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "igwn-auth-utils" }, + { name = "ligo-segments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2b/10/9f1b9100f59e2ca4a85dad8a21942d0702d756f4b80a433c728be4a871d2/gwdatafind-1.2.0.tar.gz", hash = "sha256:8f74942e66cdb9a53030da29069110b3cb30afc2a034790957786028fb09f451", size = 40381 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/89/61/5020eff070e04b1e07c7cf8bed63705aa705011e057cbb839e9a31367bdd/gwdatafind-1.2.0-py3-none-any.whl", hash = "sha256:58c505ee188c1186ff81b3de5f946f289179a4f8c334f7eb45d07dd70a71bd2c", size = 45529 }, +] + +[[package]] +name = "gwosc" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a7/d1/82de4365b8d18abfb4930d6d5aa772e3c2375b44c44598aaac4150e1dc8a/gwosc-0.7.1.tar.gz", hash = "sha256:5328223410081731ba4ef6f3be9f13ac4b3b9a43397fa04c1f50ddeb59895816", size = 35423 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/19/86/b2d5499eb119268fdfd5bc11147de1028082433431dbfa464e19f8921027/gwosc-0.7.1-py3-none-any.whl", hash = "sha256:4cb7598f9aaf8749c032e8913c723a391784a52127397989c9f733f8c3f99558", size = 27285 }, +] + +[[package]] +name = "gwpy" +version = "3.0.10" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "astropy" }, + { name = "dateparser" }, + { name = "dqsegdb2" }, + { name = "gwdatafind" }, + { name = "gwosc" }, + { name = "h5py" }, + { name = "ligo-segments" }, + { name = "ligotimegps" }, + { name = "matplotlib" }, + { name = "numpy" }, + { name = "python-dateutil" }, + { name = "requests" }, + { name = "scipy" }, + { name = "tqdm" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/40/d5/82a45dcaf285aaf04550c77a4d06abeaff2695c018be2901ddc116b60ce5/gwpy-3.0.10.tar.gz", hash = "sha256:073b4d8ec14e3db32c7cff74df2248f31d378fb095089e7ceb241cfb34f6e8fd", size = 1540393 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fd/1b/fee8e2007913613d7494b8591b5a62d3dee389f88b2425be22a9576c98ea/gwpy-3.0.10-py3-none-any.whl", hash = "sha256:348070a88b6b2acefe6b40ee541e0a6100c89604c5def62e55fd31417b82076b", size = 1395063 }, +] + +[[package]] +name = "h5py" +version = "3.12.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/cc/0c/5c2b0a88158682aeafb10c1c2b735df5bc31f165bfe192f2ee9f2a23b5f1/h5py-3.12.1.tar.gz", hash = "sha256:326d70b53d31baa61f00b8aa5f95c2fcb9621a3ee8365d770c551a13dbbcbfdf", size = 411457 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/df/7d/b21045fbb004ad8bb6fb3be4e6ca903841722706f7130b9bba31ef2f88e3/h5py-3.12.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:2f0f1a382cbf494679c07b4371f90c70391dedb027d517ac94fa2c05299dacda", size = 3402133 }, + { url = "https://files.pythonhosted.org/packages/29/a7/3c2a33fba1da64a0846744726fd067a92fb8abb887875a0dd8e3bac8b45d/h5py-3.12.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cb65f619dfbdd15e662423e8d257780f9a66677eae5b4b3fc9dca70b5fd2d2a3", size = 2866436 }, + { url = "https://files.pythonhosted.org/packages/1e/d0/4bf67c3937a2437c20844165766ddd1a1817ae6b9544c3743050d8e0f403/h5py-3.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3b15d8dbd912c97541312c0e07438864d27dbca857c5ad634de68110c6beb1c2", size = 5168596 }, + { url = "https://files.pythonhosted.org/packages/85/bc/e76f4b2096e0859225f5441d1b7f5e2041fffa19fc2c16756c67078417aa/h5py-3.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:59685fe40d8c1fbbee088c88cd4da415a2f8bee5c270337dc5a1c4aa634e3307", size = 5341537 }, + { url = "https://files.pythonhosted.org/packages/99/bd/fb8ed45308bb97e04c02bd7aed324ba11e6a4bf9ed73967ca2a168e9cf92/h5py-3.12.1-cp310-cp310-win_amd64.whl", hash = "sha256:577d618d6b6dea3da07d13cc903ef9634cde5596b13e832476dd861aaf651f3e", size = 2990575 }, + { url = "https://files.pythonhosted.org/packages/33/61/c463dc5fc02fbe019566d067a9d18746cd3c664f29c9b8b3c3f9ed025365/h5py-3.12.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ccd9006d92232727d23f784795191bfd02294a4f2ba68708825cb1da39511a93", size = 3410828 }, + { url = "https://files.pythonhosted.org/packages/95/9d/eb91a9076aa998bb2179d6b1788055ea09cdf9d6619cd967f1d3321ed056/h5py-3.12.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ad8a76557880aed5234cfe7279805f4ab5ce16b17954606cca90d578d3e713ef", size = 2872586 }, + { url = "https://files.pythonhosted.org/packages/b0/62/e2b1f9723ff713e3bd3c16dfeceec7017eadc21ef063d8b7080c0fcdc58a/h5py-3.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1473348139b885393125126258ae2d70753ef7e9cec8e7848434f385ae72069e", size = 5273038 }, + { url = "https://files.pythonhosted.org/packages/e1/89/118c3255d6ff2db33b062ec996a762d99ae50c21f54a8a6047ae8eda1b9f/h5py-3.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:018a4597f35092ae3fb28ee851fdc756d2b88c96336b8480e124ce1ac6fb9166", size = 5452688 }, + { url = "https://files.pythonhosted.org/packages/1d/4d/cbd3014eb78d1e449b29beba1f3293a841aa8086c6f7968c383c2c7ff076/h5py-3.12.1-cp311-cp311-win_amd64.whl", hash = "sha256:3fdf95092d60e8130ba6ae0ef7a9bd4ade8edbe3569c13ebbaf39baefffc5ba4", size = 3006095 }, + { url = "https://files.pythonhosted.org/packages/d4/e1/ea9bfe18a3075cdc873f0588ff26ce394726047653557876d7101bf0c74e/h5py-3.12.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:06a903a4e4e9e3ebbc8b548959c3c2552ca2d70dac14fcfa650d9261c66939ed", size = 3372538 }, + { url = "https://files.pythonhosted.org/packages/0d/74/1009b663387c025e8fa5f3ee3cf3cd0d99b1ad5c72eeb70e75366b1ce878/h5py-3.12.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7b3b8f3b48717e46c6a790e3128d39c61ab595ae0a7237f06dfad6a3b51d5351", size = 2868104 }, + { url = "https://files.pythonhosted.org/packages/af/52/c604adc06280c15a29037d4aa79a24fe54d8d0b51085e81ed24b2fa995f7/h5py-3.12.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:050a4f2c9126054515169c49cb900949814987f0c7ae74c341b0c9f9b5056834", size = 5194606 }, + { url = "https://files.pythonhosted.org/packages/fa/63/eeaacff417b393491beebabb8a3dc5342950409eb6d7b39d437289abdbae/h5py-3.12.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c4b41d1019322a5afc5082864dfd6359f8935ecd37c11ac0029be78c5d112c9", size = 5413256 }, + { url = "https://files.pythonhosted.org/packages/86/f7/bb465dcb92ca3521a15cbe1031f6d18234dbf1fb52a6796a00bfaa846ebf/h5py-3.12.1-cp312-cp312-win_amd64.whl", hash = "sha256:e4d51919110a030913201422fb07987db4338eba5ec8c5a15d6fab8e03d443fc", size = 2993055 }, + { url = "https://files.pythonhosted.org/packages/23/1c/ecdd0efab52c24f2a9bf2324289828b860e8dd1e3c5ada3cf0889e14fdc1/h5py-3.12.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:513171e90ed92236fc2ca363ce7a2fc6f2827375efcbb0cc7fbdd7fe11fecafc", size = 3346239 }, + { url = "https://files.pythonhosted.org/packages/93/cd/5b6f574bf3e318bbe305bc93ba45181676550eb44ba35e006d2e98004eaa/h5py-3.12.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:59400f88343b79655a242068a9c900001a34b63e3afb040bd7cdf717e440f653", size = 2843416 }, + { url = "https://files.pythonhosted.org/packages/8a/4f/b74332f313bfbe94ba03fff784219b9db385e6139708e55b11490149f90a/h5py-3.12.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3e465aee0ec353949f0f46bf6c6f9790a2006af896cee7c178a8c3e5090aa32", size = 5154390 }, + { url = "https://files.pythonhosted.org/packages/1a/57/93ea9e10a6457ea8d3b867207deb29a527e966a08a84c57ffd954e32152a/h5py-3.12.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba51c0c5e029bb5420a343586ff79d56e7455d496d18a30309616fdbeed1068f", size = 5378244 }, + { url = "https://files.pythonhosted.org/packages/50/51/0bbf3663062b2eeee78aa51da71e065f8a0a6e3cb950cc7020b4444999e6/h5py-3.12.1-cp313-cp313-win_amd64.whl", hash = "sha256:52ab036c6c97055b85b2a242cb540ff9590bacfda0c03dd0cf0661b311f522f8", size = 2979760 }, +] + +[[package]] +name = "humanize" +version = "4.11.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6a/40/64a912b9330786df25e58127194d4a5a7441f818b400b155e748a270f924/humanize-4.11.0.tar.gz", hash = "sha256:e66f36020a2d5a974c504bd2555cf770621dbdbb6d82f94a6857c0b1ea2608be", size = 80374 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/92/75/4bc3e242ad13f2e6c12e0b0401ab2c5e5c6f0d7da37ec69bc808e24e0ccb/humanize-4.11.0-py3-none-any.whl", hash = "sha256:b53caaec8532bcb2fff70c8826f904c35943f8cecaca29d272d9df38092736c0", size = 128055 }, +] + +[[package]] +name = "idna" +version = "3.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442 }, +] + +[[package]] +name = "igwn-auth-utils" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cryptography" }, + { name = "requests" }, + { name = "safe-netrc" }, + { name = "scitokens" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d6/25/41df00da93af467c6653808ff04143c6da7cfdf5cae8e90fe0652b77b04b/igwn_auth_utils-1.1.1.tar.gz", hash = "sha256:be787dc31227c3b497f44d88440eb81a6e069225c57c66647a420d93fbe79476", size = 31950 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c5/7d/07b9b5e6421362a27db4fdeac60e211fc07d47b94c2085bcfc2cd76192ae/igwn_auth_utils-1.1.1-py3-none-any.whl", hash = "sha256:f995d79214afbcb05823d46b33a9fd96cfa7734431a2ca5beeddb09c0452da83", size = 26712 }, +] + +[[package]] +name = "importlib-resources" +version = "6.4.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/98/be/f3e8c6081b684f176b761e6a2fef02a0be939740ed6f54109a2951d806f3/importlib_resources-6.4.5.tar.gz", hash = "sha256:980862a1d16c9e147a59603677fa2aa5fd82b87f223b6cb870695bcfce830065", size = 43372 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e1/6a/4604f9ae2fa62ef47b9de2fa5ad599589d28c9fd1d335f32759813dfa91e/importlib_resources-6.4.5-py3-none-any.whl", hash = "sha256:ac29d5f956f01d5e4bb63102a5a19957f1b9175e45649977264a1416783bb717", size = 36115 }, +] + +[[package]] +name = "iniconfig" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/4b/cbd8e699e64a6f16ca3a8220661b5f83792b3017d0f79807cb8708d33913/iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3", size = 4646 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374", size = 5892 }, +] + +[[package]] +name = "ipykernel" +version = "6.29.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "platform_system == 'Darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/5c/67594cb0c7055dc50814b21731c22a601101ea3b1b50a9a1b090e11f5d0f/ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215", size = 163367 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/5c/368ae6c01c7628438358e6d337c19b05425727fbb221d2a3c4303c372f42/ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5", size = 117173 }, +] + +[[package]] +name = "ipython" +version = "8.28.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "decorator" }, + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "jedi" }, + { name = "matplotlib-inline" }, + { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "stack-data" }, + { name = "traitlets" }, + { name = "typing-extensions", marker = "python_full_version < '3.12'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f7/21/48db7d9dd622b9692575004c7c98f85f5629428f58596c59606d36c51b58/ipython-8.28.0.tar.gz", hash = "sha256:0d0d15ca1e01faeb868ef56bc7ee5a0de5bd66885735682e8a322ae289a13d1a", size = 5495762 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f4/3a/5d8680279ada9571de8469220069d27024ee47624af534e537c9ff49a450/ipython-8.28.0-py3-none-any.whl", hash = "sha256:530ef1e7bb693724d3cdc37287c80b07ad9b25986c007a53aa1857272dac3f35", size = 819456 }, +] + +[[package]] +name = "jax" +version = "0.4.34" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jaxlib" }, + { name = "ml-dtypes" }, + { name = "numpy" }, + { name = "opt-einsum" }, + { name = "scipy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/19/6a/cacfcdf77841a4562e555ef35e0dbc5f8ca79c9f1010aaa4cf3973e79c69/jax-0.4.34.tar.gz", hash = "sha256:44196854f40c5f9cea3142824b9f1051f85afc3fcf7593ec5479fc8db01c58db", size = 1848472 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/06/f3/c499d358dd7f267a63d7d38ef54aadad82e28d2c28bafff15360c3091946/jax-0.4.34-py3-none-any.whl", hash = "sha256:b957ca1fc91f7343f91a186af9f19c7f342c946f95a8c11c7f1e5cdfe2e58d9e", size = 2144294 }, +] + +[[package]] +name = "jaxlib" +version = "0.4.34" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ml-dtypes" }, + { name = "numpy" }, + { name = "scipy" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/24/31/2e254fe2fc23201775a7d0ccd1bcde892cfa349eb805744b81b15e0dcf74/jaxlib-0.4.34-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:b7a212a3cb5c6acc201c32ae4f4b5f5a9ac09457fbb77ba8db5ce7e7d4adc214", size = 87399257 }, + { url = "https://files.pythonhosted.org/packages/1e/67/6a344c357caad33e84b871925cd043b4218fc13a427266d1a1dedcb1c095/jaxlib-0.4.34-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:45d719a2ce0ebf21255a277b71d756f3609b7b5be70cddc5d88fd58c35219de0", size = 67617952 }, + { url = "https://files.pythonhosted.org/packages/dd/ea/12c836126419ca80248228f2236831617eedb1e3640c34c942606f33bb08/jaxlib-0.4.34-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:3e60bc826933082e99b19b87c21818a8d26fcdb01f418d47cedff554746fd6cc", size = 69391770 }, + { url = "https://files.pythonhosted.org/packages/e4/b0/a5bd34643c070e50829beec217189eab1acdfea334df1f9ddb4e5f8bec0f/jaxlib-0.4.34-cp310-cp310-manylinux2014_x86_64.whl", hash = "sha256:d840e64b85f8865404d6d225b9bb340e158df1457152a361b05680e24792b232", size = 86094116 }, + { url = "https://files.pythonhosted.org/packages/d8/c9/35a4233fe74ddd5aabe89aac1b3992b0e463982564252d21fd263d4d9992/jaxlib-0.4.34-cp310-cp310-win_amd64.whl", hash = "sha256:b0001c8f0e2b1c7bc99e4f314b524a340d25653505c1a1484d4041a9d3617f6f", size = 55206389 }, + { url = "https://files.pythonhosted.org/packages/bf/14/00a3385532d72ab51bd8e9f8c3e19a2e257667955565e9fc10236771dd06/jaxlib-0.4.34-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:8ee3f93836e53c86556ccd9449a4ea43516ee05184d031a71dd692e81259f7d9", size = 87420889 }, + { url = "https://files.pythonhosted.org/packages/66/78/d1535ee73fe505dc6c8831c19c4846afdce7df5acefb9f8ee885aa73d700/jaxlib-0.4.34-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c9d3adcae43a33aad4332be9c2aedc5ef751d1e755f917a5afb30c7872eacaa8", size = 67635880 }, + { url = "https://files.pythonhosted.org/packages/aa/06/3e09e794acf308e170905d732eca0d041449503c47505cc22e8ef78a989d/jaxlib-0.4.34-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:571ef03259835458111596a71a2f4a6fabf4ec34595df4cea555035362ac5bf0", size = 69421901 }, + { url = "https://files.pythonhosted.org/packages/c7/d0/6bc81c0b1d507f403e6085ce76a429e6d7f94749d742199252e299dd1424/jaxlib-0.4.34-cp311-cp311-manylinux2014_x86_64.whl", hash = "sha256:3bcfa639ca3cfaf86c8ceebd5fc0d47300fd98a078014a1d0cc03133e1523d5f", size = 86114491 }, + { url = "https://files.pythonhosted.org/packages/9d/5d/7e71019af5f6fdebe6c10eab97d01f44b931d94609330da9e142cb155f8c/jaxlib-0.4.34-cp311-cp311-win_amd64.whl", hash = "sha256:133070d4fec5525ffea4dc72956398c1cf647a04dcb37f8a935ee82af78d9965", size = 55241262 }, + { url = "https://files.pythonhosted.org/packages/bc/42/5038983664494dfb50f8669a662d965d7ea62f9250e40d8cd36dcf9ac3dd/jaxlib-0.4.34-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:c7b3e724a30426a856070aba0192b5d199e95b4411070e7ad96ad8b196877b10", size = 87473956 }, + { url = "https://files.pythonhosted.org/packages/87/2e/8a75d3107c019c370c50c01acc205da33f9d6fba830950401a772a8e9f6d/jaxlib-0.4.34-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:096f0ca309d41fa692a9d1f2f9baab1c5c8ca0749876ebb3f748e738a27c7ff4", size = 67650276 }, + { url = "https://files.pythonhosted.org/packages/af/09/cceae2d251a506b4297679d10ee9f5e905a6b992b0687d553c9470ffd1db/jaxlib-0.4.34-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:1a30771d85fa77f9ab8f18e63240f455ab3a3f87660ed7b8d5eea6ceecbe5c1e", size = 69431284 }, + { url = "https://files.pythonhosted.org/packages/e7/0d/4faf839e3c8ce2a5b615df64427be3e870899c72c0ebfb5859348150aba1/jaxlib-0.4.34-cp312-cp312-manylinux2014_x86_64.whl", hash = "sha256:48272e9034ff868d4328cf0055a07882fd2be93f59dfb6283af7de491f9d1290", size = 86151183 }, + { url = "https://files.pythonhosted.org/packages/a4/bc/a38f99071fca6cc31ae949e508a23b0de5de559da594443bb625a1adb8f3/jaxlib-0.4.34-cp312-cp312-win_amd64.whl", hash = "sha256:901cb4040ed24eae40071d8114ea8d10dff436277fa74a1a5b9e7206f641151c", size = 55278745 }, + { url = "https://files.pythonhosted.org/packages/21/4e/fab0606683af7aa9284a32d2b188ff132cffb0ee3ea04d941a547eb776d1/jaxlib-0.4.34-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:72e22e99a5dc890a64443c3fc12f13f20091f578c405a76de077ba42b4c62cd7", size = 87474367 }, + { url = "https://files.pythonhosted.org/packages/3e/1b/709be16d543a3db5b471ee5e7d089c57484c386b08499923e43bd8da5d0b/jaxlib-0.4.34-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c303f5acaf6c56ce5ff133a923c9b6247bdebedde15bd2c893c24be4d8f71306", size = 67651281 }, + { url = "https://files.pythonhosted.org/packages/85/9e/f3801096cd4a2c764af7a1f6b683c769706602ea72b27ec35bacfcc4cd4f/jaxlib-0.4.34-cp313-cp313-manylinux2014_aarch64.whl", hash = "sha256:7be673a876ebd1aef440fb7e3ebaf99a91abeb550c9728c644b7d7c7b5d7c108", size = 69432987 }, + { url = "https://files.pythonhosted.org/packages/e6/79/61301f55b24c3a898ef9bc4e13600b66e3f838623fc6f87648ac1ccbca01/jaxlib-0.4.34-cp313-cp313-manylinux2014_x86_64.whl", hash = "sha256:87f25a477cd279840e53718403f97092eba0e8a945fcab47bcf435b6f9119dda", size = 86152550 }, + { url = "https://files.pythonhosted.org/packages/16/b0/e682d02126e0062b58dec0f0851048592396f74c24b4a4412dce4ddbbadb/jaxlib-0.4.34-cp313-cp313-win_amd64.whl", hash = "sha256:6b43a974c5d91a19912d138f2658dd8dbb7d30dcdff5c961d896c673e872b611", size = 55279410 }, +] + +[[package]] +name = "jaxtyping" +version = "0.2.34" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typeguard" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/32/cb/580f3ec30b9e52b79c0288c033a1f0a90378f3b820707a2e8894c076481b/jaxtyping-0.2.34.tar.gz", hash = "sha256:eed9a3458ec8726c84ea5457ebde53c964f65d2c22c0ec40d0555ae3fed5bbaf", size = 32688 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/56/ae/220537f80eb82ae43a299de31edb2a91a28b8c5fb8046e9ff853ec7763cd/jaxtyping-0.2.34-py3-none-any.whl", hash = "sha256:2f81fb6d1586e497a6ea2d28c06dcab37b108a096cbb36ea3fe4fa2e1c1f32e5", size = 42426 }, +] + +[[package]] +name = "jedi" +version = "0.19.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d6/99/99b493cec4bf43176b678de30f81ed003fd6a647a301b9c927280c600f0a/jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd", size = 1227821 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/9f/bc63f0f0737ad7a60800bfd472a4836661adae21f9c2535f3957b1e54ceb/jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0", size = 1569361 }, +] + +[[package]] +name = "jimgw" +version = "0.2.0" +source = { editable = "." } +dependencies = [ + { name = "astropy" }, + { name = "beartype" }, + { name = "corner" }, + { name = "flowmc" }, + { name = "gwpy" }, + { name = "jax" }, + { name = "jaxtyping" }, + { name = "pytest" }, + { name = "ripplegw" }, + { name = "typed-argument-parser" }, +] + +[package.optional-dependencies] +docs = [ + { name = "mkdocs" }, + { name = "mkdocs-gen-files" }, + { name = "mkdocs-jupyter" }, + { name = "mkdocs-literate-nav" }, + { name = "mkdocs-material" }, + { name = "mkdocstrings", extra = ["python"] }, + { name = "pymdown-extensions" }, +] + +[package.metadata] +requires-dist = [ + { name = "astropy", specifier = ">=6.1.4" }, + { name = "beartype", specifier = ">=0.19.0" }, + { name = "corner", specifier = ">=2.2.2" }, + { name = "flowmc", specifier = ">=0.3.4" }, + { name = "gwpy", specifier = ">=3.0.10" }, + { name = "jax", specifier = ">=0.4.34" }, + { name = "jaxtyping", specifier = ">=0.2.34" }, + { name = "mkdocs", marker = "extra == 'docs'" }, + { name = "mkdocs-gen-files", marker = "extra == 'docs'" }, + { name = "mkdocs-jupyter", marker = "extra == 'docs'" }, + { name = "mkdocs-literate-nav", marker = "extra == 'docs'" }, + { name = "mkdocs-material", marker = "extra == 'docs'" }, + { name = "mkdocstrings", extras = ["python"], marker = "extra == 'docs'" }, + { name = "pymdown-extensions", marker = "extra == 'docs'" }, + { name = "pytest", specifier = ">=8.3.3" }, + { name = "ripplegw", specifier = ">=0.0.9" }, + { name = "typed-argument-parser", specifier = ">=1.10.1" }, +] + +[package.metadata.requires-dev] +dev = [{ name = "jimgw", editable = "." }] + +[[package]] +name = "jinja2" +version = "3.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ed/55/39036716d19cab0747a5020fc7e907f362fbf48c984b14e62127f7e68e5d/jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369", size = 240245 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d", size = 133271 }, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "jsonschema-specifications" }, + { name = "referencing" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/38/2e/03362ee4034a4c917f697890ccd4aec0800ccf9ded7f511971c75451deec/jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4", size = 325778 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566", size = 88462 }, +] + +[[package]] +name = "jsonschema-specifications" +version = "2024.10.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "referencing" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/10/db/58f950c996c793472e336ff3655b13fbcf1e3b359dcf52dcf3ed3b52c352/jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272", size = 15561 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf", size = 18459 }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105 }, +] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "pywin32", marker = "platform_python_implementation != 'PyPy' and sys_platform == 'win32'" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/00/11/b56381fa6c3f4cc5d2cf54a7dbf98ad9aa0b339ef7a601d6053538b079a7/jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9", size = 87629 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409", size = 28965 }, +] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/90/51/9187be60d989df97f5f0aba133fa54e7300f17616e065d1ada7d7646b6d6/jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d", size = 512900 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780", size = 15884 }, +] + +[[package]] +name = "jupytext" +version = "1.16.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown-it-py" }, + { name = "mdit-py-plugins" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "pyyaml" }, + { name = "tomli", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/ba/81097573072b165772b71298c339d5da46dfeec53c1c354ce282109967ea/jupytext-1.16.4.tar.gz", hash = "sha256:28e33f46f2ce7a41fb9d677a4a2c95327285579b64ca104437c4b9eb1e4174e9", size = 3724368 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/a3/285eb1e79dbbd8e9513a3bb1bb2bb3d4c7c22c8a92efb8449baface0b864/jupytext-1.16.4-py3-none-any.whl", hash = "sha256:76989d2690e65667ea6fb411d8056abe7cd0437c07bd774660b83d62acf9490a", size = 153540 }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/85/4d/2255e1c76304cbd60b48cee302b66d1dde4468dc5b1160e4b7cb43778f2a/kiwisolver-1.4.7.tar.gz", hash = "sha256:9893ff81bd7107f7b685d3017cc6583daadb4fc26e4a888350df530e41980a60", size = 97286 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/97/14/fc943dd65268a96347472b4fbe5dcc2f6f55034516f80576cd0dd3a8930f/kiwisolver-1.4.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8a9c83f75223d5e48b0bc9cb1bf2776cf01563e00ade8775ffe13b0b6e1af3a6", size = 122440 }, + { url = "https://files.pythonhosted.org/packages/1e/46/e68fed66236b69dd02fcdb506218c05ac0e39745d696d22709498896875d/kiwisolver-1.4.7-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:58370b1ffbd35407444d57057b57da5d6549d2d854fa30249771775c63b5fe17", size = 65758 }, + { url = "https://files.pythonhosted.org/packages/ef/fa/65de49c85838681fc9cb05de2a68067a683717321e01ddafb5b8024286f0/kiwisolver-1.4.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:aa0abdf853e09aff551db11fce173e2177d00786c688203f52c87ad7fcd91ef9", size = 64311 }, + { url = "https://files.pythonhosted.org/packages/42/9c/cc8d90f6ef550f65443bad5872ffa68f3dee36de4974768628bea7c14979/kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:8d53103597a252fb3ab8b5845af04c7a26d5e7ea8122303dd7a021176a87e8b9", size = 1637109 }, + { url = "https://files.pythonhosted.org/packages/55/91/0a57ce324caf2ff5403edab71c508dd8f648094b18cfbb4c8cc0fde4a6ac/kiwisolver-1.4.7-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:88f17c5ffa8e9462fb79f62746428dd57b46eb931698e42e990ad63103f35e6c", size = 1617814 }, + { url = "https://files.pythonhosted.org/packages/12/5d/c36140313f2510e20207708adf36ae4919416d697ee0236b0ddfb6fd1050/kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88a9ca9c710d598fd75ee5de59d5bda2684d9db36a9f50b6125eaea3969c2599", size = 1400881 }, + { url = "https://files.pythonhosted.org/packages/56/d0/786e524f9ed648324a466ca8df86298780ef2b29c25313d9a4f16992d3cf/kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f4d742cb7af1c28303a51b7a27aaee540e71bb8e24f68c736f6f2ffc82f2bf05", size = 1512972 }, + { url = "https://files.pythonhosted.org/packages/67/5a/77851f2f201e6141d63c10a0708e996a1363efaf9e1609ad0441b343763b/kiwisolver-1.4.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e28c7fea2196bf4c2f8d46a0415c77a1c480cc0724722f23d7410ffe9842c407", size = 1444787 }, + { url = "https://files.pythonhosted.org/packages/06/5f/1f5eaab84355885e224a6fc8d73089e8713dc7e91c121f00b9a1c58a2195/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e968b84db54f9d42046cf154e02911e39c0435c9801681e3fc9ce8a3c4130278", size = 2199212 }, + { url = "https://files.pythonhosted.org/packages/b5/28/9152a3bfe976a0ae21d445415defc9d1cd8614b2910b7614b30b27a47270/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:0c18ec74c0472de033e1bebb2911c3c310eef5649133dd0bedf2a169a1b269e5", size = 2346399 }, + { url = "https://files.pythonhosted.org/packages/26/f6/453d1904c52ac3b400f4d5e240ac5fec25263716723e44be65f4d7149d13/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:8f0ea6da6d393d8b2e187e6a5e3fb81f5862010a40c3945e2c6d12ae45cfb2ad", size = 2308688 }, + { url = "https://files.pythonhosted.org/packages/5a/9a/d4968499441b9ae187e81745e3277a8b4d7c60840a52dc9d535a7909fac3/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:f106407dda69ae456dd1227966bf445b157ccc80ba0dff3802bb63f30b74e895", size = 2445493 }, + { url = "https://files.pythonhosted.org/packages/07/c9/032267192e7828520dacb64dfdb1d74f292765f179e467c1cba97687f17d/kiwisolver-1.4.7-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:84ec80df401cfee1457063732d90022f93951944b5b58975d34ab56bb150dfb3", size = 2262191 }, + { url = "https://files.pythonhosted.org/packages/6c/ad/db0aedb638a58b2951da46ddaeecf204be8b4f5454df020d850c7fa8dca8/kiwisolver-1.4.7-cp310-cp310-win32.whl", hash = "sha256:71bb308552200fb2c195e35ef05de12f0c878c07fc91c270eb3d6e41698c3bcc", size = 46644 }, + { url = "https://files.pythonhosted.org/packages/12/ca/d0f7b7ffbb0be1e7c2258b53554efec1fd652921f10d7d85045aff93ab61/kiwisolver-1.4.7-cp310-cp310-win_amd64.whl", hash = "sha256:44756f9fd339de0fb6ee4f8c1696cfd19b2422e0d70b4cefc1cc7f1f64045a8c", size = 55877 }, + { url = "https://files.pythonhosted.org/packages/97/6c/cfcc128672f47a3e3c0d918ecb67830600078b025bfc32d858f2e2d5c6a4/kiwisolver-1.4.7-cp310-cp310-win_arm64.whl", hash = "sha256:78a42513018c41c2ffd262eb676442315cbfe3c44eed82385c2ed043bc63210a", size = 48347 }, + { url = "https://files.pythonhosted.org/packages/e9/44/77429fa0a58f941d6e1c58da9efe08597d2e86bf2b2cce6626834f49d07b/kiwisolver-1.4.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:d2b0e12a42fb4e72d509fc994713d099cbb15ebf1103545e8a45f14da2dfca54", size = 122442 }, + { url = "https://files.pythonhosted.org/packages/e5/20/8c75caed8f2462d63c7fd65e16c832b8f76cda331ac9e615e914ee80bac9/kiwisolver-1.4.7-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a8781ac3edc42ea4b90bc23e7d37b665d89423818e26eb6df90698aa2287c95", size = 65762 }, + { url = "https://files.pythonhosted.org/packages/f4/98/fe010f15dc7230f45bc4cf367b012d651367fd203caaa992fd1f5963560e/kiwisolver-1.4.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:46707a10836894b559e04b0fd143e343945c97fd170d69a2d26d640b4e297935", size = 64319 }, + { url = "https://files.pythonhosted.org/packages/8b/1b/b5d618f4e58c0675654c1e5051bcf42c776703edb21c02b8c74135541f60/kiwisolver-1.4.7-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef97b8df011141c9b0f6caf23b29379f87dd13183c978a30a3c546d2c47314cb", size = 1334260 }, + { url = "https://files.pythonhosted.org/packages/b8/01/946852b13057a162a8c32c4c8d2e9ed79f0bb5d86569a40c0b5fb103e373/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3ab58c12a2cd0fc769089e6d38466c46d7f76aced0a1f54c77652446733d2d02", size = 1426589 }, + { url = "https://files.pythonhosted.org/packages/70/d1/c9f96df26b459e15cf8a965304e6e6f4eb291e0f7a9460b4ad97b047561e/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:803b8e1459341c1bb56d1c5c010406d5edec8a0713a0945851290a7930679b51", size = 1541080 }, + { url = "https://files.pythonhosted.org/packages/d3/73/2686990eb8b02d05f3de759d6a23a4ee7d491e659007dd4c075fede4b5d0/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f9a9e8a507420fe35992ee9ecb302dab68550dedc0da9e2880dd88071c5fb052", size = 1470049 }, + { url = "https://files.pythonhosted.org/packages/a7/4b/2db7af3ed3af7c35f388d5f53c28e155cd402a55432d800c543dc6deb731/kiwisolver-1.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18077b53dc3bb490e330669a99920c5e6a496889ae8c63b58fbc57c3d7f33a18", size = 1426376 }, + { url = "https://files.pythonhosted.org/packages/05/83/2857317d04ea46dc5d115f0df7e676997bbd968ced8e2bd6f7f19cfc8d7f/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6af936f79086a89b3680a280c47ea90b4df7047b5bdf3aa5c524bbedddb9e545", size = 2222231 }, + { url = "https://files.pythonhosted.org/packages/0d/b5/866f86f5897cd4ab6d25d22e403404766a123f138bd6a02ecb2cdde52c18/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:3abc5b19d24af4b77d1598a585b8a719beb8569a71568b66f4ebe1fb0449460b", size = 2368634 }, + { url = "https://files.pythonhosted.org/packages/c1/ee/73de8385403faba55f782a41260210528fe3273d0cddcf6d51648202d6d0/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:933d4de052939d90afbe6e9d5273ae05fb836cc86c15b686edd4b3560cc0ee36", size = 2329024 }, + { url = "https://files.pythonhosted.org/packages/a1/e7/cd101d8cd2cdfaa42dc06c433df17c8303d31129c9fdd16c0ea37672af91/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:65e720d2ab2b53f1f72fb5da5fb477455905ce2c88aaa671ff0a447c2c80e8e3", size = 2468484 }, + { url = "https://files.pythonhosted.org/packages/e1/72/84f09d45a10bc57a40bb58b81b99d8f22b58b2040c912b7eb97ebf625bf2/kiwisolver-1.4.7-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:3bf1ed55088f214ba6427484c59553123fdd9b218a42bbc8c6496d6754b1e523", size = 2284078 }, + { url = "https://files.pythonhosted.org/packages/d2/d4/71828f32b956612dc36efd7be1788980cb1e66bfb3706e6dec9acad9b4f9/kiwisolver-1.4.7-cp311-cp311-win32.whl", hash = "sha256:4c00336b9dd5ad96d0a558fd18a8b6f711b7449acce4c157e7343ba92dd0cf3d", size = 46645 }, + { url = "https://files.pythonhosted.org/packages/a1/65/d43e9a20aabcf2e798ad1aff6c143ae3a42cf506754bcb6a7ed8259c8425/kiwisolver-1.4.7-cp311-cp311-win_amd64.whl", hash = "sha256:929e294c1ac1e9f615c62a4e4313ca1823ba37326c164ec720a803287c4c499b", size = 56022 }, + { url = "https://files.pythonhosted.org/packages/35/b3/9f75a2e06f1b4ca00b2b192bc2b739334127d27f1d0625627ff8479302ba/kiwisolver-1.4.7-cp311-cp311-win_arm64.whl", hash = "sha256:e33e8fbd440c917106b237ef1a2f1449dfbb9b6f6e1ce17c94cd6a1e0d438376", size = 48536 }, + { url = "https://files.pythonhosted.org/packages/97/9c/0a11c714cf8b6ef91001c8212c4ef207f772dd84540104952c45c1f0a249/kiwisolver-1.4.7-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:5360cc32706dab3931f738d3079652d20982511f7c0ac5711483e6eab08efff2", size = 121808 }, + { url = "https://files.pythonhosted.org/packages/f2/d8/0fe8c5f5d35878ddd135f44f2af0e4e1d379e1c7b0716f97cdcb88d4fd27/kiwisolver-1.4.7-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942216596dc64ddb25adb215c3c783215b23626f8d84e8eff8d6d45c3f29f75a", size = 65531 }, + { url = "https://files.pythonhosted.org/packages/80/c5/57fa58276dfdfa612241d640a64ca2f76adc6ffcebdbd135b4ef60095098/kiwisolver-1.4.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:48b571ecd8bae15702e4f22d3ff6a0f13e54d3d00cd25216d5e7f658242065ee", size = 63894 }, + { url = "https://files.pythonhosted.org/packages/8b/e9/26d3edd4c4ad1c5b891d8747a4f81b1b0aba9fb9721de6600a4adc09773b/kiwisolver-1.4.7-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ad42ba922c67c5f219097b28fae965e10045ddf145d2928bfac2eb2e17673640", size = 1369296 }, + { url = "https://files.pythonhosted.org/packages/b6/67/3f4850b5e6cffb75ec40577ddf54f7b82b15269cc5097ff2e968ee32ea7d/kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:612a10bdae23404a72941a0fc8fa2660c6ea1217c4ce0dbcab8a8f6543ea9e7f", size = 1461450 }, + { url = "https://files.pythonhosted.org/packages/52/be/86cbb9c9a315e98a8dc6b1d23c43cffd91d97d49318854f9c37b0e41cd68/kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9e838bba3a3bac0fe06d849d29772eb1afb9745a59710762e4ba3f4cb8424483", size = 1579168 }, + { url = "https://files.pythonhosted.org/packages/0f/00/65061acf64bd5fd34c1f4ae53f20b43b0a017a541f242a60b135b9d1e301/kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:22f499f6157236c19f4bbbd472fa55b063db77a16cd74d49afe28992dff8c258", size = 1507308 }, + { url = "https://files.pythonhosted.org/packages/21/e4/c0b6746fd2eb62fe702118b3ca0cb384ce95e1261cfada58ff693aeec08a/kiwisolver-1.4.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:693902d433cf585133699972b6d7c42a8b9f8f826ebcaf0132ff55200afc599e", size = 1464186 }, + { url = "https://files.pythonhosted.org/packages/0a/0f/529d0a9fffb4d514f2782c829b0b4b371f7f441d61aa55f1de1c614c4ef3/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4e77f2126c3e0b0d055f44513ed349038ac180371ed9b52fe96a32aa071a5107", size = 2247877 }, + { url = "https://files.pythonhosted.org/packages/d1/e1/66603ad779258843036d45adcbe1af0d1a889a07af4635f8b4ec7dccda35/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:657a05857bda581c3656bfc3b20e353c232e9193eb167766ad2dc58b56504948", size = 2404204 }, + { url = "https://files.pythonhosted.org/packages/8d/61/de5fb1ca7ad1f9ab7970e340a5b833d735df24689047de6ae71ab9d8d0e7/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:4bfa75a048c056a411f9705856abfc872558e33c055d80af6a380e3658766038", size = 2352461 }, + { url = "https://files.pythonhosted.org/packages/ba/d2/0edc00a852e369827f7e05fd008275f550353f1f9bcd55db9363d779fc63/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:34ea1de54beef1c104422d210c47c7d2a4999bdecf42c7b5718fbe59a4cac383", size = 2501358 }, + { url = "https://files.pythonhosted.org/packages/84/15/adc15a483506aec6986c01fb7f237c3aec4d9ed4ac10b756e98a76835933/kiwisolver-1.4.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:90da3b5f694b85231cf93586dad5e90e2d71b9428f9aad96952c99055582f520", size = 2314119 }, + { url = "https://files.pythonhosted.org/packages/36/08/3a5bb2c53c89660863a5aa1ee236912269f2af8762af04a2e11df851d7b2/kiwisolver-1.4.7-cp312-cp312-win32.whl", hash = "sha256:18e0cca3e008e17fe9b164b55735a325140a5a35faad8de92dd80265cd5eb80b", size = 46367 }, + { url = "https://files.pythonhosted.org/packages/19/93/c05f0a6d825c643779fc3c70876bff1ac221f0e31e6f701f0e9578690d70/kiwisolver-1.4.7-cp312-cp312-win_amd64.whl", hash = "sha256:58cb20602b18f86f83a5c87d3ee1c766a79c0d452f8def86d925e6c60fbf7bfb", size = 55884 }, + { url = "https://files.pythonhosted.org/packages/d2/f9/3828d8f21b6de4279f0667fb50a9f5215e6fe57d5ec0d61905914f5b6099/kiwisolver-1.4.7-cp312-cp312-win_arm64.whl", hash = "sha256:f5a8b53bdc0b3961f8b6125e198617c40aeed638b387913bf1ce78afb1b0be2a", size = 48528 }, + { url = "https://files.pythonhosted.org/packages/c4/06/7da99b04259b0f18b557a4effd1b9c901a747f7fdd84cf834ccf520cb0b2/kiwisolver-1.4.7-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:2e6039dcbe79a8e0f044f1c39db1986a1b8071051efba3ee4d74f5b365f5226e", size = 121913 }, + { url = "https://files.pythonhosted.org/packages/97/f5/b8a370d1aa593c17882af0a6f6755aaecd643640c0ed72dcfd2eafc388b9/kiwisolver-1.4.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a1ecf0ac1c518487d9d23b1cd7139a6a65bc460cd101ab01f1be82ecf09794b6", size = 65627 }, + { url = "https://files.pythonhosted.org/packages/2a/fc/6c0374f7503522539e2d4d1b497f5ebad3f8ed07ab51aed2af988dd0fb65/kiwisolver-1.4.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7ab9ccab2b5bd5702ab0803676a580fffa2aa178c2badc5557a84cc943fcf750", size = 63888 }, + { url = "https://files.pythonhosted.org/packages/bf/3e/0b7172793d0f41cae5c923492da89a2ffcd1adf764c16159ca047463ebd3/kiwisolver-1.4.7-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f816dd2277f8d63d79f9c8473a79fe54047bc0467754962840782c575522224d", size = 1369145 }, + { url = "https://files.pythonhosted.org/packages/77/92/47d050d6f6aced2d634258123f2688fbfef8ded3c5baf2c79d94d91f1f58/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cf8bcc23ceb5a1b624572a1623b9f79d2c3b337c8c455405ef231933a10da379", size = 1461448 }, + { url = "https://files.pythonhosted.org/packages/9c/1b/8f80b18e20b3b294546a1adb41701e79ae21915f4175f311a90d042301cf/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:dea0bf229319828467d7fca8c7c189780aa9ff679c94539eed7532ebe33ed37c", size = 1578750 }, + { url = "https://files.pythonhosted.org/packages/a4/fe/fe8e72f3be0a844f257cadd72689c0848c6d5c51bc1d60429e2d14ad776e/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c06a4c7cf15ec739ce0e5971b26c93638730090add60e183530d70848ebdd34", size = 1507175 }, + { url = "https://files.pythonhosted.org/packages/39/fa/cdc0b6105d90eadc3bee525fecc9179e2b41e1ce0293caaf49cb631a6aaf/kiwisolver-1.4.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:913983ad2deb14e66d83c28b632fd35ba2b825031f2fa4ca29675e665dfecbe1", size = 1463963 }, + { url = "https://files.pythonhosted.org/packages/6e/5c/0c03c4e542720c6177d4f408e56d1c8315899db72d46261a4e15b8b33a41/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5337ec7809bcd0f424c6b705ecf97941c46279cf5ed92311782c7c9c2026f07f", size = 2248220 }, + { url = "https://files.pythonhosted.org/packages/3d/ee/55ef86d5a574f4e767df7da3a3a7ff4954c996e12d4fbe9c408170cd7dcc/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c26ed10c4f6fa6ddb329a5120ba3b6db349ca192ae211e882970bfc9d91420b", size = 2404463 }, + { url = "https://files.pythonhosted.org/packages/0f/6d/73ad36170b4bff4825dc588acf4f3e6319cb97cd1fb3eb04d9faa6b6f212/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c619b101e6de2222c1fcb0531e1b17bbffbe54294bfba43ea0d411d428618c27", size = 2352842 }, + { url = "https://files.pythonhosted.org/packages/0b/16/fa531ff9199d3b6473bb4d0f47416cdb08d556c03b8bc1cccf04e756b56d/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:073a36c8273647592ea332e816e75ef8da5c303236ec0167196793eb1e34657a", size = 2501635 }, + { url = "https://files.pythonhosted.org/packages/78/7e/aa9422e78419db0cbe75fb86d8e72b433818f2e62e2e394992d23d23a583/kiwisolver-1.4.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:3ce6b2b0231bda412463e152fc18335ba32faf4e8c23a754ad50ffa70e4091ee", size = 2314556 }, + { url = "https://files.pythonhosted.org/packages/a8/b2/15f7f556df0a6e5b3772a1e076a9d9f6c538ce5f05bd590eca8106508e06/kiwisolver-1.4.7-cp313-cp313-win32.whl", hash = "sha256:f4c9aee212bc89d4e13f58be11a56cc8036cabad119259d12ace14b34476fd07", size = 46364 }, + { url = "https://files.pythonhosted.org/packages/0b/db/32e897e43a330eee8e4770bfd2737a9584b23e33587a0812b8e20aac38f7/kiwisolver-1.4.7-cp313-cp313-win_amd64.whl", hash = "sha256:8a3ec5aa8e38fc4c8af308917ce12c536f1c88452ce554027e55b22cbbfbff76", size = 55887 }, + { url = "https://files.pythonhosted.org/packages/c8/a4/df2bdca5270ca85fd25253049eb6708d4127be2ed0e5c2650217450b59e9/kiwisolver-1.4.7-cp313-cp313-win_arm64.whl", hash = "sha256:76c8094ac20ec259471ac53e774623eb62e6e1f56cd8690c67ce6ce4fcb05650", size = 48530 }, + { url = "https://files.pythonhosted.org/packages/ac/59/741b79775d67ab67ced9bb38552da688c0305c16e7ee24bba7a2be253fb7/kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:94252291e3fe68001b1dd747b4c0b3be12582839b95ad4d1b641924d68fd4643", size = 59491 }, + { url = "https://files.pythonhosted.org/packages/58/cc/fb239294c29a5656e99e3527f7369b174dd9cc7c3ef2dea7cb3c54a8737b/kiwisolver-1.4.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:5b7dfa3b546da08a9f622bb6becdb14b3e24aaa30adba66749d38f3cc7ea9706", size = 57648 }, + { url = "https://files.pythonhosted.org/packages/3b/ef/2f009ac1f7aab9f81efb2d837301d255279d618d27b6015780115ac64bdd/kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bd3de6481f4ed8b734da5df134cd5a6a64fe32124fe83dde1e5b5f29fe30b1e6", size = 84257 }, + { url = "https://files.pythonhosted.org/packages/81/e1/c64f50987f85b68b1c52b464bb5bf73e71570c0f7782d626d1eb283ad620/kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a91b5f9f1205845d488c928e8570dcb62b893372f63b8b6e98b863ebd2368ff2", size = 80906 }, + { url = "https://files.pythonhosted.org/packages/fd/71/1687c5c0a0be2cee39a5c9c389e546f9c6e215e46b691d00d9f646892083/kiwisolver-1.4.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40fa14dbd66b8b8f470d5fc79c089a66185619d31645f9b0773b88b19f7223c4", size = 79951 }, + { url = "https://files.pythonhosted.org/packages/ea/8b/d7497df4a1cae9367adf21665dd1f896c2a7aeb8769ad77b662c5e2bcce7/kiwisolver-1.4.7-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:eb542fe7933aa09d8d8f9d9097ef37532a7df6497819d16efe4359890a2f417a", size = 55715 }, +] + +[[package]] +name = "ligo-segments" +version = "1.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/81/60/8de5c89e4e5fc760649cee0c773418ecc920c3dae21ac5656fd3e5e21a9d/ligo-segments-1.4.0.tar.gz", hash = "sha256:e072a844713c5b02efdcaf5bfe4c3a8cd9ef225b08cfd3202a4e185e0f71f5dc", size = 51015 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8d/a5/665dc05c2669aa95e2dfcb2b06748315287d3696abf1374dd6e7f6c3a175/ligo_segments-1.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:f8a0fb3ec6bef7effb80fb2f4f4ffaac02afa77db41a0c42fce5e969201e621b", size = 50007 }, + { url = "https://files.pythonhosted.org/packages/3a/db/b2de07a032a766d34480e93e6d4ecda5a4d651bb6a5e3286c2624d6c181d/ligo_segments-1.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:da82ae2b839bad0027e0a492b3673344e62360747d41194a265563e6c2903c7d", size = 50007 }, + { url = "https://files.pythonhosted.org/packages/b5/37/c962f26408ce45271a5a3aaa918f7beae74a8e8a6f00bbe5fdf77fd778ca/ligo_segments-1.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:601be6d92e52bdebbb5a82b608ed1ceb781a0ea86b3e5333d61af77575b32664", size = 50555 }, +] + +[[package]] +name = "ligotimegps" +version = "2.0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/39/2e/cef2ee4c4f3f1f04566e3e7e9343811a74f6e9a0bc6ef4711248f132e3bb/ligotimegps-2.0.1.tar.gz", hash = "sha256:88626c02ad9a464d1242a1147b40074792f424bafa2ab013eee629c7d1b6469c", size = 35191 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/b6/6d6d0585fa2ae936a9f5d411b1f0fbe9fcb0aca0c51a775aa4f8f95fdf5e/ligotimegps-2.0.1-py2.py3-none-any.whl", hash = "sha256:da8c1289ba1310337ef5177e7936e25ce47d4e8e6a269cbdd5e9abfc5b5db490", size = 19930 }, +] + +[[package]] +name = "markdown" +version = "3.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/54/28/3af612670f82f4c056911fbbbb42760255801b3068c48de792d354ff4472/markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2", size = 357086 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3f/08/83871f3c50fc983b88547c196d11cf8c3340e37c32d2e9d6152abe2c61f7/Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803", size = 106349 }, +] + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mdurl" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/38/71/3b932df36c1a044d397a1f92d1cf91ee0a503d91e470cbd670aa66b07ed0/markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb", size = 74596 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/42/d7/1ec15b46af6af88f19b8e5ffea08fa375d433c998b8a7639e76935c14f1f/markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1", size = 87528 }, +] + +[[package]] +name = "markupsafe" +version = "3.0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b4/d2/38ff920762f2247c3af5cbbbbc40756f575d9692d381d7c520f45deb9b8f/markupsafe-3.0.1.tar.gz", hash = "sha256:3e683ee4f5d0fa2dde4db77ed8dd8a876686e3fc417655c2ece9a90576905344", size = 20249 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/43/a2/0482d1a157f5f10f72fc4fe8c3be9ffa3651c1f7a12b60a3ab71b2635e13/MarkupSafe-3.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:db842712984e91707437461930e6011e60b39136c7331e971952bb30465bc1a1", size = 14391 }, + { url = "https://files.pythonhosted.org/packages/3b/25/5ea6500d200fd2dc3ea25c765f69dea0a1a8d42ec80a38cd896ad47cb85d/MarkupSafe-3.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3ffb4a8e7d46ed96ae48805746755fadd0909fea2306f93d5d8233ba23dda12a", size = 12414 }, + { url = "https://files.pythonhosted.org/packages/92/41/cf5397dd6bb18895d148aa402cafa71018f2ffc5f6e9d6e90d85b523c741/MarkupSafe-3.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:67c519635a4f64e495c50e3107d9b4075aec33634272b5db1cde839e07367589", size = 21787 }, + { url = "https://files.pythonhosted.org/packages/2e/0d/5d91ef2b4f30afa87483a3a7c108c777d144b1c42d7113459296a8a2bfa0/MarkupSafe-3.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:48488d999ed50ba8d38c581d67e496f955821dc183883550a6fbc7f1aefdc170", size = 20954 }, + { url = "https://files.pythonhosted.org/packages/f6/de/12a4110c2c7c7b502fe0e6f911367726dbb7a37e03e207495135d064bb48/MarkupSafe-3.0.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f31ae06f1328595d762c9a2bf29dafd8621c7d3adc130cbb46278079758779ca", size = 21086 }, + { url = "https://files.pythonhosted.org/packages/96/55/59389babc6e8ed206849a9958de9da7c23f3a75d294f46e99624fa38fb79/MarkupSafe-3.0.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:80fcbf3add8790caddfab6764bde258b5d09aefbe9169c183f88a7410f0f6dea", size = 21685 }, + { url = "https://files.pythonhosted.org/packages/3d/cb/cbad5f093e12cd79ceea3e2957ba5bd4c2706810f333d0a3422ab2aef358/MarkupSafe-3.0.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3341c043c37d78cc5ae6e3e305e988532b072329639007fd408a476642a89fd6", size = 21348 }, + { url = "https://files.pythonhosted.org/packages/8e/70/e19c4f39d68a52406012ee118667b57efb0bbe6e950be21187cd7a1b4b80/MarkupSafe-3.0.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cb53e2a99df28eee3b5f4fea166020d3ef9116fdc5764bc5117486e6d1211b25", size = 21098 }, + { url = "https://files.pythonhosted.org/packages/30/95/ca809c01624428d427e9b3a4500f9068eca941e0c520328954ce84ad966a/MarkupSafe-3.0.1-cp310-cp310-win32.whl", hash = "sha256:db15ce28e1e127a0013dfb8ac243a8e392db8c61eae113337536edb28bdc1f97", size = 15075 }, + { url = "https://files.pythonhosted.org/packages/23/41/decb99ab07793656821a86f827a394700ce28402ebb02dc6d003210d9859/MarkupSafe-3.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:4ffaaac913c3f7345579db4f33b0020db693f302ca5137f106060316761beea9", size = 15535 }, + { url = "https://files.pythonhosted.org/packages/ce/af/2f5d88a7fc7226bd34c6e15f6061246ad8cff979da9f19d11bdd0addd8e2/MarkupSafe-3.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:26627785a54a947f6d7336ce5963569b5d75614619e75193bdb4e06e21d447ad", size = 14387 }, + { url = "https://files.pythonhosted.org/packages/8d/43/fd588ef5d192308c5e05974bac659bf6ae29c202b7ea2c4194bcf01eacee/MarkupSafe-3.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b954093679d5750495725ea6f88409946d69cfb25ea7b4c846eef5044194f583", size = 12410 }, + { url = "https://files.pythonhosted.org/packages/58/26/78f161d602fb03804118905e5faacafc0ec592bbad71aaee62537529813a/MarkupSafe-3.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:973a371a55ce9ed333a3a0f8e0bcfae9e0d637711534bcb11e130af2ab9334e7", size = 24006 }, + { url = "https://files.pythonhosted.org/packages/ae/1d/7d5ec8bcfd9c2db235d720fa51d818b7e2abc45250ce5f53dd6cb60409ca/MarkupSafe-3.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:244dbe463d5fb6d7ce161301a03a6fe744dac9072328ba9fc82289238582697b", size = 23303 }, + { url = "https://files.pythonhosted.org/packages/26/ce/703ca3b03a709e3bd1fbffa407789e56b9fa664456538092617dd665fc1d/MarkupSafe-3.0.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d98e66a24497637dd31ccab090b34392dddb1f2f811c4b4cd80c230205c074a3", size = 23205 }, + { url = "https://files.pythonhosted.org/packages/88/60/40be0493decabc2344b12d3a709fd6ccdd15a5ebaee1e8d878315d107ad3/MarkupSafe-3.0.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ad91738f14eb8da0ff82f2acd0098b6257621410dcbd4df20aaa5b4233d75a50", size = 23684 }, + { url = "https://files.pythonhosted.org/packages/6d/f8/8fd52a66e8f62a9add62b4a0b5a3ab4092027437f2ef027f812d94ae91cf/MarkupSafe-3.0.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:7044312a928a66a4c2a22644147bc61a199c1709712069a344a3fb5cfcf16915", size = 23472 }, + { url = "https://files.pythonhosted.org/packages/d4/0b/998b17b9e06ea45ad1646fea586f1b83d02dfdb14d47dd2fd81fba5a08c9/MarkupSafe-3.0.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a4792d3b3a6dfafefdf8e937f14906a51bd27025a36f4b188728a73382231d91", size = 23388 }, + { url = "https://files.pythonhosted.org/packages/5a/57/b6b7aa23b2e26d68d601718f8ce3161fbdaf967b31752c7dec52bef828c9/MarkupSafe-3.0.1-cp311-cp311-win32.whl", hash = "sha256:fa7d686ed9883f3d664d39d5a8e74d3c5f63e603c2e3ff0abcba23eac6542635", size = 15106 }, + { url = "https://files.pythonhosted.org/packages/fc/b5/20cb1d714596acb553c810009c8004c809823947da63e13c19a7decfcb6c/MarkupSafe-3.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:9ba25a71ebf05b9bb0e2ae99f8bc08a07ee8e98c612175087112656ca0f5c8bf", size = 15542 }, + { url = "https://files.pythonhosted.org/packages/45/6d/72ed58d42a12bd9fc288dbff6dd8d03ea973a232ac0538d7f88d105b5251/MarkupSafe-3.0.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:8ae369e84466aa70f3154ee23c1451fda10a8ee1b63923ce76667e3077f2b0c4", size = 14322 }, + { url = "https://files.pythonhosted.org/packages/86/f5/241238f89cdd6461ac9f521af8389f9a48fab97e4f315c69e9e0d52bc919/MarkupSafe-3.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40f1e10d51c92859765522cbd79c5c8989f40f0419614bcdc5015e7b6bf97fc5", size = 12380 }, + { url = "https://files.pythonhosted.org/packages/27/94/79751928bca5841416d8ca02e22198672e021d5c7120338e2a6e3771f8fc/MarkupSafe-3.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a4cb365cb49b750bdb60b846b0c0bc49ed62e59a76635095a179d440540c346", size = 24099 }, + { url = "https://files.pythonhosted.org/packages/10/6e/1b8070bbfc467429c7983cd5ffd4ec57e1d501763d974c7caaa0a9a79f4c/MarkupSafe-3.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ee3941769bd2522fe39222206f6dd97ae83c442a94c90f2b7a25d847d40f4729", size = 23249 }, + { url = "https://files.pythonhosted.org/packages/66/50/9389ae6cdff78d7481a2a2641830b5eb1d1f62177550e73355a810a889c9/MarkupSafe-3.0.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:62fada2c942702ef8952754abfc1a9f7658a4d5460fabe95ac7ec2cbe0d02abc", size = 23149 }, + { url = "https://files.pythonhosted.org/packages/16/02/5dddff5366fde47133186efb847fa88bddef85914bbe623e25cfeccb3517/MarkupSafe-3.0.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4c2d64fdba74ad16138300815cfdc6ab2f4647e23ced81f59e940d7d4a1469d9", size = 23864 }, + { url = "https://files.pythonhosted.org/packages/f3/f1/700ee6655561cfda986e03f7afc309e3738918551afa7dedd99225586227/MarkupSafe-3.0.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:fb532dd9900381d2e8f48172ddc5a59db4c445a11b9fab40b3b786da40d3b56b", size = 23440 }, + { url = "https://files.pythonhosted.org/packages/fb/3e/d26623ac7f16709823b4c80e0b4a1c9196eeb46182a6c1d47b5e0c8434f4/MarkupSafe-3.0.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0f84af7e813784feb4d5e4ff7db633aba6c8ca64a833f61d8e4eade234ef0c38", size = 23610 }, + { url = "https://files.pythonhosted.org/packages/51/04/1f8da0810c39cb9fcff96b6baed62272c97065e9cf11471965a161439e20/MarkupSafe-3.0.1-cp312-cp312-win32.whl", hash = "sha256:cbf445eb5628981a80f54087f9acdbf84f9b7d862756110d172993b9a5ae81aa", size = 15113 }, + { url = "https://files.pythonhosted.org/packages/eb/24/a36dc37365bdd358b1e583cc40475593e36ab02cb7da6b3d0b9c05b0da7a/MarkupSafe-3.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:a10860e00ded1dd0a65b83e717af28845bb7bd16d8ace40fe5531491de76b79f", size = 15611 }, + { url = "https://files.pythonhosted.org/packages/b1/60/4572a8aa1beccbc24b133aa0670781a5d2697f4fa3fecf0a87b46383174b/MarkupSafe-3.0.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:e81c52638315ff4ac1b533d427f50bc0afc746deb949210bc85f05d4f15fd772", size = 14325 }, + { url = "https://files.pythonhosted.org/packages/38/42/849915b99a765ec104bfd07ee933de5fc9c58fa9570efa7db81717f495d8/MarkupSafe-3.0.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:312387403cd40699ab91d50735ea7a507b788091c416dd007eac54434aee51da", size = 12373 }, + { url = "https://files.pythonhosted.org/packages/ef/82/4caaebd963c6d60b28e4445f38841d24f8b49bc10594a09956c9d73bfc08/MarkupSafe-3.0.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ae99f31f47d849758a687102afdd05bd3d3ff7dbab0a8f1587981b58a76152a", size = 24059 }, + { url = "https://files.pythonhosted.org/packages/20/15/6b319be2f79fcfa3173f479d69f4e950b5c9b642db4f22cf73ae5ade745f/MarkupSafe-3.0.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c97ff7fedf56d86bae92fa0a646ce1a0ec7509a7578e1ed238731ba13aabcd1c", size = 23211 }, + { url = "https://files.pythonhosted.org/packages/9d/3f/8963bdf4962feb2154475acb7dc350f04217b5e0be7763a39b432291e229/MarkupSafe-3.0.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a7420ceda262dbb4b8d839a4ec63d61c261e4e77677ed7c66c99f4e7cb5030dd", size = 23095 }, + { url = "https://files.pythonhosted.org/packages/af/93/f770bc70953d32de0c6ce4bcb76271512123a1ead91aaef625a020c5bfaf/MarkupSafe-3.0.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:45d42d132cff577c92bfba536aefcfea7e26efb975bd455db4e6602f5c9f45e7", size = 23901 }, + { url = "https://files.pythonhosted.org/packages/11/92/1e5a33aa0a1190161238628fb68eb1bc5e67b56a5c89f0636328704b463a/MarkupSafe-3.0.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4c8817557d0de9349109acb38b9dd570b03cc5014e8aabf1cbddc6e81005becd", size = 23463 }, + { url = "https://files.pythonhosted.org/packages/0d/fe/657efdfe385d2a3a701f2c4fcc9577c63c438aeefdd642d0d956c4ecd225/MarkupSafe-3.0.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a54c43d3ec4cf2a39f4387ad044221c66a376e58c0d0e971d47c475ba79c6b5", size = 23569 }, + { url = "https://files.pythonhosted.org/packages/cf/24/587dea40304046ace60f846cedaebc0d33d967a3ce46c11395a10e7a78ba/MarkupSafe-3.0.1-cp313-cp313-win32.whl", hash = "sha256:c91b394f7601438ff79a4b93d16be92f216adb57d813a78be4446fe0f6bc2d8c", size = 15117 }, + { url = "https://files.pythonhosted.org/packages/32/8f/d8961d633f26a011b4fe054f3bfff52f673423b8c431553268741dfb089e/MarkupSafe-3.0.1-cp313-cp313-win_amd64.whl", hash = "sha256:fe32482b37b4b00c7a52a07211b479653b7fe4f22b2e481b9a9b099d8a430f2f", size = 15613 }, + { url = "https://files.pythonhosted.org/packages/9e/93/d6367ffbcd0c5c371370767f768eaa32af60bc411245b8517e383c6a2b12/MarkupSafe-3.0.1-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:17b2aea42a7280db02ac644db1d634ad47dcc96faf38ab304fe26ba2680d359a", size = 14563 }, + { url = "https://files.pythonhosted.org/packages/4a/37/f813c3835747dec08fe19ac9b9eced01fdf93a4b3e626521675dc7f423a9/MarkupSafe-3.0.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:852dc840f6d7c985603e60b5deaae1d89c56cb038b577f6b5b8c808c97580f1d", size = 12505 }, + { url = "https://files.pythonhosted.org/packages/72/bf/800b4d1580298ca91ccd6c95915bbd147142dad1b8cf91d57b93b28670dd/MarkupSafe-3.0.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0778de17cff1acaeccc3ff30cd99a3fd5c50fc58ad3d6c0e0c4c58092b859396", size = 25358 }, + { url = "https://files.pythonhosted.org/packages/fd/78/26e209abc8f0a379f031f0acc151231974e5b153d7eda5759d17d8f329f2/MarkupSafe-3.0.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:800100d45176652ded796134277ecb13640c1a537cad3b8b53da45aa96330453", size = 23797 }, + { url = "https://files.pythonhosted.org/packages/09/e1/918496a9390891756efee818880e71c1bbaf587f4dc8ede3f3852357310a/MarkupSafe-3.0.1-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d06b24c686a34c86c8c1fba923181eae6b10565e4d80bdd7bc1c8e2f11247aa4", size = 23743 }, + { url = "https://files.pythonhosted.org/packages/cd/c6/26f576cd58d6c2decd9045e4e3f3c5dbc01ea6cb710916e7bbb6ebd95b6b/MarkupSafe-3.0.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:33d1c36b90e570ba7785dacd1faaf091203d9942bc036118fab8110a401eb1a8", size = 25076 }, + { url = "https://files.pythonhosted.org/packages/b5/fa/10b24fb3b0e15fe5389dc88ecc6226ede08297e0ba7130610efbe0cdfb27/MarkupSafe-3.0.1-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:beeebf760a9c1f4c07ef6a53465e8cfa776ea6a2021eda0d0417ec41043fe984", size = 24037 }, + { url = "https://files.pythonhosted.org/packages/c8/81/4b3f5537d9f6cc4f5c80d6c4b78af9a5247fd37b5aba95807b2cbc336b9a/MarkupSafe-3.0.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:bbde71a705f8e9e4c3e9e33db69341d040c827c7afa6789b14c6e16776074f5a", size = 24015 }, + { url = "https://files.pythonhosted.org/packages/5f/07/8e8dcecd53216c5e01a51e84c32a2bce166690ed19c184774b38cd41921d/MarkupSafe-3.0.1-cp313-cp313t-win32.whl", hash = "sha256:82b5dba6eb1bcc29cc305a18a3c5365d2af06ee71b123216416f7e20d2a84e5b", size = 15213 }, + { url = "https://files.pythonhosted.org/packages/0d/87/4c364e0f109eea2402079abecbe33fef4f347b551a11423d1f4e187ea497/MarkupSafe-3.0.1-cp313-cp313t-win_amd64.whl", hash = "sha256:730d86af59e0e43ce277bb83970530dd223bf7f2a838e086b50affa6ec5f9295", size = 15741 }, +] + +[[package]] +name = "matplotlib" +version = "3.9.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "contourpy" }, + { name = "cycler" }, + { name = "fonttools" }, + { name = "kiwisolver" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "pyparsing" }, + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9e/d8/3d7f706c69e024d4287c1110d74f7dabac91d9843b99eadc90de9efc8869/matplotlib-3.9.2.tar.gz", hash = "sha256:96ab43906269ca64a6366934106fa01534454a69e471b7bf3d79083981aaab92", size = 36088381 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/9d/84eeb82ecdd3ba71b12dd6ab5c820c5cc1e868003ecb3717d41b589ec02a/matplotlib-3.9.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9d78bbc0cbc891ad55b4f39a48c22182e9bdaea7fc0e5dbd364f49f729ca1bbb", size = 7893310 }, + { url = "https://files.pythonhosted.org/packages/36/98/cbacbd30241369d099f9c13a2b6bc3b7068d85214f5b5795e583ac3d8aba/matplotlib-3.9.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c375cc72229614632c87355366bdf2570c2dac01ac66b8ad048d2dabadf2d0d4", size = 7764089 }, + { url = "https://files.pythonhosted.org/packages/a8/a0/917f3c6d3a8774a3a1502d9f3dfc1456e07c1fa0c211a23b75a69e154180/matplotlib-3.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d94ff717eb2bd0b58fe66380bd8b14ac35f48a98e7c6765117fe67fb7684e64", size = 8192377 }, + { url = "https://files.pythonhosted.org/packages/8d/9d/d06860390f9d154fa884f1740a5456378fb153ff57443c91a4a32bab7092/matplotlib-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab68d50c06938ef28681073327795c5db99bb4666214d2d5f880ed11aeaded66", size = 8303983 }, + { url = "https://files.pythonhosted.org/packages/9e/a7/c0e848ed7de0766c605af62d8097472a37f1a81d93e9afe94faa5890f24d/matplotlib-3.9.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:65aacf95b62272d568044531e41de26285d54aec8cb859031f511f84bd8b495a", size = 9083318 }, + { url = "https://files.pythonhosted.org/packages/09/6c/0fa50c001340a45cde44853c116d6551aea741e59a7261c38f473b53553b/matplotlib-3.9.2-cp310-cp310-win_amd64.whl", hash = "sha256:3fd595f34aa8a55b7fc8bf9ebea8aa665a84c82d275190a61118d33fbc82ccae", size = 7819628 }, + { url = "https://files.pythonhosted.org/packages/77/c2/f9d7fe80a8fcce9bb128d1381c6fe41a8d286d7e18395e273002e8e0fa34/matplotlib-3.9.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d8dd059447824eec055e829258ab092b56bb0579fc3164fa09c64f3acd478772", size = 7902925 }, + { url = "https://files.pythonhosted.org/packages/28/ba/8be09886eb56ac04a218a1dc3fa728a5c4cac60b019b4f1687885166da00/matplotlib-3.9.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c797dac8bb9c7a3fd3382b16fe8f215b4cf0f22adccea36f1545a6d7be310b41", size = 7773193 }, + { url = "https://files.pythonhosted.org/packages/e6/9a/5991972a560db3ab621312a7ca5efec339ae2122f25901c0846865c4b72f/matplotlib-3.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d719465db13267bcef19ea8954a971db03b9f48b4647e3860e4bc8e6ed86610f", size = 8202378 }, + { url = "https://files.pythonhosted.org/packages/01/75/6c7ce560e95714a10fcbb3367d1304975a1a3e620f72af28921b796403f3/matplotlib-3.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8912ef7c2362f7193b5819d17dae8629b34a95c58603d781329712ada83f9447", size = 8314361 }, + { url = "https://files.pythonhosted.org/packages/6e/49/dc7384c6c092958e0b75e754efbd9e52500154939c3d715789cee9fb8a53/matplotlib-3.9.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:7741f26a58a240f43bee74965c4882b6c93df3e7eb3de160126d8c8f53a6ae6e", size = 9091428 }, + { url = "https://files.pythonhosted.org/packages/8b/ce/15b0bb2fb29b3d46211d8ca740b96b5232499fc49200b58b8d571292c9a6/matplotlib-3.9.2-cp311-cp311-win_amd64.whl", hash = "sha256:ae82a14dab96fbfad7965403c643cafe6515e386de723e498cf3eeb1e0b70cc7", size = 7829377 }, + { url = "https://files.pythonhosted.org/packages/82/de/54f7f38ce6de79cb77d513bb3eaa4e0b1031e9fd6022214f47943fa53a88/matplotlib-3.9.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ac43031375a65c3196bee99f6001e7fa5bdfb00ddf43379d3c0609bdca042df9", size = 7892511 }, + { url = "https://files.pythonhosted.org/packages/35/3e/5713b84a02b24b2a4bd4d6673bfc03017e6654e1d8793ece783b7ed4d484/matplotlib-3.9.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:be0fc24a5e4531ae4d8e858a1a548c1fe33b176bb13eff7f9d0d38ce5112a27d", size = 7769370 }, + { url = "https://files.pythonhosted.org/packages/5b/bd/c404502aa1824456d2862dd6b9b0c1917761a51a32f7f83ff8cf94b6d117/matplotlib-3.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bf81de2926c2db243c9b2cbc3917619a0fc85796c6ba4e58f541df814bbf83c7", size = 8193260 }, + { url = "https://files.pythonhosted.org/packages/27/75/de5b9cd67648051cae40039da0c8cbc497a0d99acb1a1f3d087cd66d27b7/matplotlib-3.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6ee45bc4245533111ced13f1f2cace1e7f89d1c793390392a80c139d6cf0e6c", size = 8306310 }, + { url = "https://files.pythonhosted.org/packages/de/e3/2976e4e54d7ee76eaf54b7639fdc10a223d05c2bdded7045233e9871e469/matplotlib-3.9.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:306c8dfc73239f0e72ac50e5a9cf19cc4e8e331dd0c54f5e69ca8758550f1e1e", size = 9086717 }, + { url = "https://files.pythonhosted.org/packages/d2/92/c2b9464a0562feb6ae780bdc152364810862e07ef5e6affa2b7686028db2/matplotlib-3.9.2-cp312-cp312-win_amd64.whl", hash = "sha256:5413401594cfaff0052f9d8b1aafc6d305b4bd7c4331dccd18f561ff7e1d3bd3", size = 7832805 }, + { url = "https://files.pythonhosted.org/packages/5c/7f/8932eac316b32f464b8f9069f151294dcd892c8fbde61fe8bcd7ba7f7f7e/matplotlib-3.9.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:18128cc08f0d3cfff10b76baa2f296fc28c4607368a8402de61bb3f2eb33c7d9", size = 7893012 }, + { url = "https://files.pythonhosted.org/packages/90/89/9db9db3dd0ff3e2c49e452236dfe29e60b5586a88f8928ca1d153d0da8b5/matplotlib-3.9.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4876d7d40219e8ae8bb70f9263bcbe5714415acfdf781086601211335e24f8aa", size = 7769810 }, + { url = "https://files.pythonhosted.org/packages/67/26/d2661cdc2e1410b8929c5f12dfd521e4528abfed1b3c3d5a28ac48258b43/matplotlib-3.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d9f07a80deab4bb0b82858a9e9ad53d1382fd122be8cde11080f4e7dfedb38b", size = 8193779 }, + { url = "https://files.pythonhosted.org/packages/95/70/4839eaa672bf4eacc98ebc8d23633e02b6daf39e294e7433c4ab11a689be/matplotlib-3.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7c0410f181a531ec4e93bbc27692f2c71a15c2da16766f5ba9761e7ae518413", size = 8306260 }, + { url = "https://files.pythonhosted.org/packages/88/62/7b263b2cb2724b45d3a4f9c8c6137696cc3ef037d44383fb01ac2a9555c2/matplotlib-3.9.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:909645cce2dc28b735674ce0931a4ac94e12f5b13f6bb0b5a5e65e7cea2c192b", size = 9086073 }, + { url = "https://files.pythonhosted.org/packages/b0/6d/3572fe243c74112fef120f0bc86f5edd21f49b60e8322fc7f6a01fe945dd/matplotlib-3.9.2-cp313-cp313-win_amd64.whl", hash = "sha256:f32c7410c7f246838a77d6d1eff0c0f87f3cb0e7c4247aebea71a6d5a68cab49", size = 7833041 }, + { url = "https://files.pythonhosted.org/packages/03/8f/9d505be3eb2f40ec731674fb6b47d10cc3147bbd6a9ea7a08c8da55415c6/matplotlib-3.9.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:37e51dd1c2db16ede9cfd7b5cabdfc818b2c6397c83f8b10e0e797501c963a03", size = 7933657 }, + { url = "https://files.pythonhosted.org/packages/5d/68/44b458b9794bcff2a66921f8c9a8110a50a0bb099bd5f7cabb428a1dc765/matplotlib-3.9.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:b82c5045cebcecd8496a4d694d43f9cc84aeeb49fe2133e036b207abe73f4d30", size = 7799276 }, + { url = "https://files.pythonhosted.org/packages/47/79/8486d4ddcaaf676314b5fb58e8fe19d1a6210a443a7c31fa72d4215fcb87/matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f053c40f94bc51bc03832a41b4f153d83f2062d88c72b5e79997072594e97e51", size = 8221027 }, + { url = "https://files.pythonhosted.org/packages/56/62/72a472181578c3d035dcda0d0fa2e259ba2c4cb91132588a348bb705b70d/matplotlib-3.9.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dbe196377a8248972f5cede786d4c5508ed5f5ca4a1e09b44bda889958b33f8c", size = 8329097 }, + { url = "https://files.pythonhosted.org/packages/01/8a/760f7fce66b39f447ad160800619d0bd5d0936d2b4633587116534a4afe0/matplotlib-3.9.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:5816b1e1fe8c192cbc013f8f3e3368ac56fbecf02fb41b8f8559303f24c5015e", size = 9093770 }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/a36a337438a14116b16480db471ad061c36c3694df7c2084a0da7ba538b7/matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90", size = 8159 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899 }, +] + +[[package]] +name = "mdit-py-plugins" +version = "0.4.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown-it-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/19/03/a2ecab526543b152300717cf232bb4bb8605b6edb946c845016fa9c9c9fd/mdit_py_plugins-0.4.2.tar.gz", hash = "sha256:5f2cd1fdb606ddf152d37ec30e46101a60512bc0e5fa1a7002c36647b09e26b5", size = 43542 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a7/f7/7782a043553ee469c1ff49cfa1cdace2d6bf99a1f333cf38676b3ddf30da/mdit_py_plugins-0.4.2-py3-none-any.whl", hash = "sha256:0c673c3f889399a33b95e88d2f0d111b4447bdfea7f237dab2d488f459835636", size = 55316 }, +] + +[[package]] +name = "mdurl" +version = "0.1.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d6/54/cfe61301667036ec958cb99bd3efefba235e65cdeb9c84d24a8293ba1d90/mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba", size = 8729 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979 }, +] + +[[package]] +name = "mergedeep" +version = "1.3.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/3a/41/580bb4006e3ed0361b8151a01d324fb03f420815446c7def45d02f74c270/mergedeep-1.3.4.tar.gz", hash = "sha256:0096d52e9dad9939c3d975a774666af186eda617e6ca84df4c94dec30004f2a8", size = 4661 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/19/04f9b178c2d8a15b076c8b5140708fa6ffc5601fb6f1e975537072df5b2a/mergedeep-1.3.4-py3-none-any.whl", hash = "sha256:70775750742b25c0d8f36c55aed03d24c3384d17c951b3175d898bd778ef0307", size = 6354 }, +] + +[[package]] +name = "mistune" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ef/c8/f0173fe3bf85fd891aee2e7bcd8207dfe26c2c683d727c5a6cc3aec7b628/mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8", size = 90840 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f0/74/c95adcdf032956d9ef6c89a9b8a5152bf73915f8c633f3e3d88d06bd699c/mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205", size = 47958 }, +] + +[[package]] +name = "mkdocs" +version = "1.6.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "click" }, + { name = "colorama", marker = "platform_system == 'Windows'" }, + { name = "ghp-import" }, + { name = "jinja2" }, + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mergedeep" }, + { name = "mkdocs-get-deps" }, + { name = "packaging" }, + { name = "pathspec" }, + { name = "pyyaml" }, + { name = "pyyaml-env-tag" }, + { name = "watchdog" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bc/c6/bbd4f061bd16b378247f12953ffcb04786a618ce5e904b8c5a01a0309061/mkdocs-1.6.1.tar.gz", hash = "sha256:7b432f01d928c084353ab39c57282f29f92136665bdd6abf7c1ec8d822ef86f2", size = 3889159 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/5b/dbc6a8cddc9cfa9c4971d59fb12bb8d42e161b7e7f8cc89e49137c5b279c/mkdocs-1.6.1-py3-none-any.whl", hash = "sha256:db91759624d1647f3f34aa0c3f327dd2601beae39a366d6e064c03468d35c20e", size = 3864451 }, +] + +[[package]] +name = "mkdocs-autorefs" +version = "1.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mkdocs" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fb/ae/0f1154c614d6a8b8a36fff084e5b82af3a15f7d2060cf0dcdb1c53297a71/mkdocs_autorefs-1.2.0.tar.gz", hash = "sha256:a86b93abff653521bda71cf3fc5596342b7a23982093915cb74273f67522190f", size = 40262 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/71/26/4d39d52ea2219604053a4d05b98e90d6a335511cc01806436ec4886b1028/mkdocs_autorefs-1.2.0-py3-none-any.whl", hash = "sha256:d588754ae89bd0ced0c70c06f58566a4ee43471eeeee5202427da7de9ef85a2f", size = 16522 }, +] + +[[package]] +name = "mkdocs-gen-files" +version = "0.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mkdocs" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/48/85/2d634462fd59136197d3126ca431ffb666f412e3db38fd5ce3a60566303e/mkdocs_gen_files-0.5.0.tar.gz", hash = "sha256:4c7cf256b5d67062a788f6b1d035e157fc1a9498c2399be9af5257d4ff4d19bc", size = 7539 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/0f/1e55b3fd490ad2cecb6e7b31892d27cb9fc4218ec1dab780440ba8579e74/mkdocs_gen_files-0.5.0-py3-none-any.whl", hash = "sha256:7ac060096f3f40bd19039e7277dd3050be9a453c8ac578645844d4d91d7978ea", size = 8380 }, +] + +[[package]] +name = "mkdocs-get-deps" +version = "0.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mergedeep" }, + { name = "platformdirs" }, + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/98/f5/ed29cd50067784976f25ed0ed6fcd3c2ce9eb90650aa3b2796ddf7b6870b/mkdocs_get_deps-0.2.0.tar.gz", hash = "sha256:162b3d129c7fad9b19abfdcb9c1458a651628e4b1dea628ac68790fb3061c60c", size = 10239 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9f/d4/029f984e8d3f3b6b726bd33cafc473b75e9e44c0f7e80a5b29abc466bdea/mkdocs_get_deps-0.2.0-py3-none-any.whl", hash = "sha256:2bf11d0b133e77a0dd036abeeb06dec8775e46efa526dc70667d8863eefc6134", size = 9521 }, +] + +[[package]] +name = "mkdocs-jupyter" +version = "0.25.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "jupytext" }, + { name = "mkdocs" }, + { name = "mkdocs-material" }, + { name = "nbconvert" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6c/23/6ffb8d2fd2117aa860a04c6fe2510b21bc3c3c085907ffdd851caba53152/mkdocs_jupyter-0.25.1.tar.gz", hash = "sha256:0e9272ff4947e0ec683c92423a4bfb42a26477c103ab1a6ab8277e2dcc8f7afe", size = 1626747 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/08/37/5f1fd5c3f6954b3256f8126275e62af493b96fb6aef6c0dbc4ee326032ad/mkdocs_jupyter-0.25.1-py3-none-any.whl", hash = "sha256:3f679a857609885d322880e72533ef5255561bbfdb13cfee2a1e92ef4d4ad8d8", size = 1456197 }, +] + +[[package]] +name = "mkdocs-literate-nav" +version = "0.6.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mkdocs" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/4d/f9/c48a04f3cf484f8016a343c1d7d99c3a1ef01dbb33ceabb1d02e0ecabda7/mkdocs_literate_nav-0.6.1.tar.gz", hash = "sha256:78a7ab6d878371728acb0cdc6235c9b0ffc6e83c997b037f4a5c6ff7cef7d759", size = 16437 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/51/3b/e00d839d3242844c77e248f9572dd34644a04300839a60fe7d6bf652ab19/mkdocs_literate_nav-0.6.1-py3-none-any.whl", hash = "sha256:e70bdc4a07050d32da79c0b697bd88e9a104cf3294282e9cb20eec94c6b0f401", size = 13182 }, +] + +[[package]] +name = "mkdocs-material" +version = "9.5.41" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "babel" }, + { name = "colorama" }, + { name = "jinja2" }, + { name = "markdown" }, + { name = "mkdocs" }, + { name = "mkdocs-material-extensions" }, + { name = "paginate" }, + { name = "pygments" }, + { name = "pymdown-extensions" }, + { name = "regex" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ab/56/c58fe932fe0b3e70b065f1ce5759672c81ae91d00b720023ab8cd580b7a8/mkdocs_material-9.5.41.tar.gz", hash = "sha256:30fa5d459b4b8130848ecd8e1c908878345d9d8268f7ddbc31eebe88d462d97b", size = 3963765 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/38/bd/92771ccb61285dacfe852f96c08601f9b4830a3e1647ccc9726588b3340b/mkdocs_material-9.5.41-py3-none-any.whl", hash = "sha256:990bc138c33342b5b73e7545915ebc0136e501bfbd8e365735144f5120891d83", size = 8672461 }, +] + +[[package]] +name = "mkdocs-material-extensions" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/79/9b/9b4c96d6593b2a541e1cb8b34899a6d021d208bb357042823d4d2cabdbe7/mkdocs_material_extensions-1.3.1.tar.gz", hash = "sha256:10c9511cea88f568257f960358a467d12b970e1f7b2c0e5fb2bb48cab1928443", size = 11847 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5b/54/662a4743aa81d9582ee9339d4ffa3c8fd40a4965e033d77b9da9774d3960/mkdocs_material_extensions-1.3.1-py3-none-any.whl", hash = "sha256:adff8b62700b25cb77b53358dad940f3ef973dd6db797907c49e3c2ef3ab4e31", size = 8728 }, +] + +[[package]] +name = "mkdocstrings" +version = "0.26.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "click" }, + { name = "jinja2" }, + { name = "markdown" }, + { name = "markupsafe" }, + { name = "mkdocs" }, + { name = "mkdocs-autorefs" }, + { name = "platformdirs" }, + { name = "pymdown-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c0/76/0475d10d27f3384df3a6ddfdf4a4fdfef83766f77cd4e327d905dc956c15/mkdocstrings-0.26.2.tar.gz", hash = "sha256:34a8b50f1e6cfd29546c6c09fbe02154adfb0b361bb758834bf56aa284ba876e", size = 92512 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/80/b6/4ee320d7c313da3774eff225875eb278f7e6bb26a9cd8e680b8dbc38fdea/mkdocstrings-0.26.2-py3-none-any.whl", hash = "sha256:1248f3228464f3b8d1a15bd91249ce1701fe3104ac517a5f167a0e01ca850ba5", size = 29716 }, +] + +[package.optional-dependencies] +python = [ + { name = "mkdocstrings-python" }, +] + +[[package]] +name = "mkdocstrings-python" +version = "1.12.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "griffe" }, + { name = "mkdocs-autorefs" }, + { name = "mkdocstrings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/61/19/7b186a49a957611270d6c4fc156face8748cf98680a40c00b5b0b7008fe1/mkdocstrings_python-1.12.1.tar.gz", hash = "sha256:60d6a5ca912c9af4ad431db6d0111ce9f79c6c48d33377dde6a05a8f5f48d792", size = 168014 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/65/e8/3cf3467fb8e31f68bfc8a2bfd5f4891c1eaa584b0c62b76c783d24d1901d/mkdocstrings_python-1.12.1-py3-none-any.whl", hash = "sha256:205244488199c9aa2a39787ad6a0c862d39b74078ea9aa2be817bc972399563f", size = 111657 }, +] + +[[package]] +name = "ml-dtypes" +version = "0.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ab/79/717c5e22ad25d63ce3acdfe8ff8d64bdedec18914256c59b838218708b16/ml_dtypes-0.5.0.tar.gz", hash = "sha256:3e7d3a380fe73a63c884f06136f8baa7a5249cc8e9fdec677997dd78549f8128", size = 699367 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/83/50/0a2048895a764b138638b5e7a62436545eb206948a5e6f77d9d5a4b02479/ml_dtypes-0.5.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:8c32138975797e681eb175996d64356bcfa124bdbb6a70460b9768c2b35a6fa4", size = 736793 }, + { url = "https://files.pythonhosted.org/packages/0b/b1/95e7995f031bb3890884ddb22e331f24c49b0a4a8f6c448ff5984c86012e/ml_dtypes-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ab046f2ff789b1f11b2491909682c5d089934835f9a760fafc180e47dcb676b8", size = 4387416 }, + { url = "https://files.pythonhosted.org/packages/9a/5b/d47361f882ff2ae27d764f314d18706c69859da60a6c78e6c9e81714c792/ml_dtypes-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c7a9152f5876fef565516aa5dd1dccd6fc298a5891b2467973905103eb5c7856", size = 4496271 }, + { url = "https://files.pythonhosted.org/packages/e6/0c/a89f5c0fe9e48ed6e7e27d53e045711ee3d5b850bece5ee22fb0fb24b281/ml_dtypes-0.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:968fede07d1f9b926a63df97d25ac656cac1a57ebd33701734eaf704bc55d8d8", size = 211915 }, + { url = "https://files.pythonhosted.org/packages/fe/29/8968fd7ee026c0d04c553fb1ce1cd67f9da668cd567d62c0cdc995ce989e/ml_dtypes-0.5.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:60275f2b51b56834e840c4809fca840565f9bf8e9a73f6d8c94f5b5935701215", size = 736792 }, + { url = "https://files.pythonhosted.org/packages/19/93/14896596644dad2e041ac5ca7237e6233c484f7defa186ff88b18ee6110b/ml_dtypes-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76942f6aeb5c40766d5ea62386daa4148e6a54322aaf5b53eae9e7553240222f", size = 4392038 }, + { url = "https://files.pythonhosted.org/packages/89/65/ffdbf3489b0ba2213674ea347fad3a11747be64d2d23d888f9e5abe80a18/ml_dtypes-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e7534392682c3098bc7341648c650864207169c654aed83143d7a19c67ae06f", size = 4499448 }, + { url = "https://files.pythonhosted.org/packages/bf/31/058b9bcf9a81abd51623985add78711a915e4b0f6045baa5f9a0b41eb039/ml_dtypes-0.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:dc74fd9995513d33eac63d64e436240f5494ec74d522a9f0920194942fc3d2d7", size = 211916 }, + { url = "https://files.pythonhosted.org/packages/1c/b7/a067839f6e435785f34b09d96938dccb3a5d9502037de243cb84a2eb3f23/ml_dtypes-0.5.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d4b1a70a3e5219790d6b55b9507606fc4e02911d1497d16c18dd721eb7efe7d0", size = 750226 }, + { url = "https://files.pythonhosted.org/packages/31/75/bf571247bb3dbea73aa33ccae57ce322b9688003cfee2f68d303ab7b987b/ml_dtypes-0.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a988bac6572630e1e9c2edd9b1277b4eefd1c86209e52b0d061b775ac33902ff", size = 4420139 }, + { url = "https://files.pythonhosted.org/packages/6f/d3/1321715a95e856d4ef4fba24e4351cf5e4c89d459ad132a8cba5fe257d72/ml_dtypes-0.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a38df8df61194aeaae1ab7579075779b4ad32cd1cffd012c28be227fa7f2a70a", size = 4471130 }, + { url = "https://files.pythonhosted.org/packages/00/3a/40c40b78a7eb456837817bfa2c5bc442db59aefdf21c5ecb94700037813d/ml_dtypes-0.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:afa08343069874a30812871d639f9c02b4158ace065601406a493a8511180c02", size = 213187 }, + { url = "https://files.pythonhosted.org/packages/b3/4a/18f670a2703e771a6775fbc354208e597ff062a88efb0cecc220a282210b/ml_dtypes-0.5.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:d3b3db9990c3840986a0e70524e122cfa32b91139c3653df76121ba7776e015f", size = 753345 }, + { url = "https://files.pythonhosted.org/packages/ed/c6/358d85e274e22d53def0c85f3cbe0933475fa3cf6922e9dca66eb25cb22f/ml_dtypes-0.5.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e04fde367b2fe901b1d47234426fe8819909bd1dd862a5adb630f27789c20599", size = 4424962 }, + { url = "https://files.pythonhosted.org/packages/4c/b4/d766586e24e7a073333c8eb8bd9275f3c6fe0569b509ae7b1699d4f00c74/ml_dtypes-0.5.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:54415257f00eb44fbcc807454efac3356f75644f1cbfc2d4e5522a72ae1dacab", size = 4475201 }, + { url = "https://files.pythonhosted.org/packages/14/87/30323ad2e52f56262019a4493fe5f5e71067c5561ce7e2f9c75de520f5e8/ml_dtypes-0.5.0-cp313-cp313-win_amd64.whl", hash = "sha256:cb5cc7b25acabd384f75bbd78892d0c724943f3e2e1986254665a1aa10982e07", size = 213195 }, +] + +[[package]] +name = "msgpack" +version = "1.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cb/d0/7555686ae7ff5731205df1012ede15dd9d927f6227ea151e901c7406af4f/msgpack-1.1.0.tar.gz", hash = "sha256:dd432ccc2c72b914e4cb77afce64aab761c1137cc698be3984eee260bcb2896e", size = 167260 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4b/f9/a892a6038c861fa849b11a2bb0502c07bc698ab6ea53359e5771397d883b/msgpack-1.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:7ad442d527a7e358a469faf43fda45aaf4ac3249c8310a82f0ccff9164e5dccd", size = 150428 }, + { url = "https://files.pythonhosted.org/packages/df/7a/d174cc6a3b6bb85556e6a046d3193294a92f9a8e583cdbd46dc8a1d7e7f4/msgpack-1.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:74bed8f63f8f14d75eec75cf3d04ad581da6b914001b474a5d3cd3372c8cc27d", size = 84131 }, + { url = "https://files.pythonhosted.org/packages/08/52/bf4fbf72f897a23a56b822997a72c16de07d8d56d7bf273242f884055682/msgpack-1.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:914571a2a5b4e7606997e169f64ce53a8b1e06f2cf2c3a7273aa106236d43dd5", size = 81215 }, + { url = "https://files.pythonhosted.org/packages/02/95/dc0044b439b518236aaf012da4677c1b8183ce388411ad1b1e63c32d8979/msgpack-1.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c921af52214dcbb75e6bdf6a661b23c3e6417f00c603dd2070bccb5c3ef499f5", size = 371229 }, + { url = "https://files.pythonhosted.org/packages/ff/75/09081792db60470bef19d9c2be89f024d366b1e1973c197bb59e6aabc647/msgpack-1.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8ce0b22b890be5d252de90d0e0d119f363012027cf256185fc3d474c44b1b9e", size = 378034 }, + { url = "https://files.pythonhosted.org/packages/32/d3/c152e0c55fead87dd948d4b29879b0f14feeeec92ef1fd2ec21b107c3f49/msgpack-1.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:73322a6cc57fcee3c0c57c4463d828e9428275fb85a27aa2aa1a92fdc42afd7b", size = 363070 }, + { url = "https://files.pythonhosted.org/packages/d9/2c/82e73506dd55f9e43ac8aa007c9dd088c6f0de2aa19e8f7330e6a65879fc/msgpack-1.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e1f3c3d21f7cf67bcf2da8e494d30a75e4cf60041d98b3f79875afb5b96f3a3f", size = 359863 }, + { url = "https://files.pythonhosted.org/packages/cb/a0/3d093b248837094220e1edc9ec4337de3443b1cfeeb6e0896af8ccc4cc7a/msgpack-1.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:64fc9068d701233effd61b19efb1485587560b66fe57b3e50d29c5d78e7fef68", size = 368166 }, + { url = "https://files.pythonhosted.org/packages/e4/13/7646f14f06838b406cf5a6ddbb7e8dc78b4996d891ab3b93c33d1ccc8678/msgpack-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:42f754515e0f683f9c79210a5d1cad631ec3d06cea5172214d2176a42e67e19b", size = 370105 }, + { url = "https://files.pythonhosted.org/packages/67/fa/dbbd2443e4578e165192dabbc6a22c0812cda2649261b1264ff515f19f15/msgpack-1.1.0-cp310-cp310-win32.whl", hash = "sha256:3df7e6b05571b3814361e8464f9304c42d2196808e0119f55d0d3e62cd5ea044", size = 68513 }, + { url = "https://files.pythonhosted.org/packages/24/ce/c2c8fbf0ded750cb63cbcbb61bc1f2dfd69e16dca30a8af8ba80ec182dcd/msgpack-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:685ec345eefc757a7c8af44a3032734a739f8c45d1b0ac45efc5d8977aa4720f", size = 74687 }, + { url = "https://files.pythonhosted.org/packages/b7/5e/a4c7154ba65d93be91f2f1e55f90e76c5f91ccadc7efc4341e6f04c8647f/msgpack-1.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:3d364a55082fb2a7416f6c63ae383fbd903adb5a6cf78c5b96cc6316dc1cedc7", size = 150803 }, + { url = "https://files.pythonhosted.org/packages/60/c2/687684164698f1d51c41778c838d854965dd284a4b9d3a44beba9265c931/msgpack-1.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:79ec007767b9b56860e0372085f8504db5d06bd6a327a335449508bbee9648fa", size = 84343 }, + { url = "https://files.pythonhosted.org/packages/42/ae/d3adea9bb4a1342763556078b5765e666f8fdf242e00f3f6657380920972/msgpack-1.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6ad622bf7756d5a497d5b6836e7fc3752e2dd6f4c648e24b1803f6048596f701", size = 81408 }, + { url = "https://files.pythonhosted.org/packages/dc/17/6313325a6ff40ce9c3207293aee3ba50104aed6c2c1559d20d09e5c1ff54/msgpack-1.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e59bca908d9ca0de3dc8684f21ebf9a690fe47b6be93236eb40b99af28b6ea6", size = 396096 }, + { url = "https://files.pythonhosted.org/packages/a8/a1/ad7b84b91ab5a324e707f4c9761633e357820b011a01e34ce658c1dda7cc/msgpack-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e1da8f11a3dd397f0a32c76165cf0c4eb95b31013a94f6ecc0b280c05c91b59", size = 403671 }, + { url = "https://files.pythonhosted.org/packages/bb/0b/fd5b7c0b308bbf1831df0ca04ec76fe2f5bf6319833646b0a4bd5e9dc76d/msgpack-1.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:452aff037287acb1d70a804ffd022b21fa2bb7c46bee884dbc864cc9024128a0", size = 387414 }, + { url = "https://files.pythonhosted.org/packages/f0/03/ff8233b7c6e9929a1f5da3c7860eccd847e2523ca2de0d8ef4878d354cfa/msgpack-1.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8da4bf6d54ceed70e8861f833f83ce0814a2b72102e890cbdfe4b34764cdd66e", size = 383759 }, + { url = "https://files.pythonhosted.org/packages/1f/1b/eb82e1fed5a16dddd9bc75f0854b6e2fe86c0259c4353666d7fab37d39f4/msgpack-1.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:41c991beebf175faf352fb940bf2af9ad1fb77fd25f38d9142053914947cdbf6", size = 394405 }, + { url = "https://files.pythonhosted.org/packages/90/2e/962c6004e373d54ecf33d695fb1402f99b51832631e37c49273cc564ffc5/msgpack-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:a52a1f3a5af7ba1c9ace055b659189f6c669cf3657095b50f9602af3a3ba0fe5", size = 396041 }, + { url = "https://files.pythonhosted.org/packages/f8/20/6e03342f629474414860c48aeffcc2f7f50ddaf351d95f20c3f1c67399a8/msgpack-1.1.0-cp311-cp311-win32.whl", hash = "sha256:58638690ebd0a06427c5fe1a227bb6b8b9fdc2bd07701bec13c2335c82131a88", size = 68538 }, + { url = "https://files.pythonhosted.org/packages/aa/c4/5a582fc9a87991a3e6f6800e9bb2f3c82972912235eb9539954f3e9997c7/msgpack-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:fd2906780f25c8ed5d7b323379f6138524ba793428db5d0e9d226d3fa6aa1788", size = 74871 }, + { url = "https://files.pythonhosted.org/packages/e1/d6/716b7ca1dbde63290d2973d22bbef1b5032ca634c3ff4384a958ec3f093a/msgpack-1.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d46cf9e3705ea9485687aa4001a76e44748b609d260af21c4ceea7f2212a501d", size = 152421 }, + { url = "https://files.pythonhosted.org/packages/70/da/5312b067f6773429cec2f8f08b021c06af416bba340c912c2ec778539ed6/msgpack-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5dbad74103df937e1325cc4bfeaf57713be0b4f15e1c2da43ccdd836393e2ea2", size = 85277 }, + { url = "https://files.pythonhosted.org/packages/28/51/da7f3ae4462e8bb98af0d5bdf2707f1b8c65a0d4f496e46b6afb06cbc286/msgpack-1.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:58dfc47f8b102da61e8949708b3eafc3504509a5728f8b4ddef84bd9e16ad420", size = 82222 }, + { url = "https://files.pythonhosted.org/packages/33/af/dc95c4b2a49cff17ce47611ca9ba218198806cad7796c0b01d1e332c86bb/msgpack-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4676e5be1b472909b2ee6356ff425ebedf5142427842aa06b4dfd5117d1ca8a2", size = 392971 }, + { url = "https://files.pythonhosted.org/packages/f1/54/65af8de681fa8255402c80eda2a501ba467921d5a7a028c9c22a2c2eedb5/msgpack-1.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17fb65dd0bec285907f68b15734a993ad3fc94332b5bb21b0435846228de1f39", size = 401403 }, + { url = "https://files.pythonhosted.org/packages/97/8c/e333690777bd33919ab7024269dc3c41c76ef5137b211d776fbb404bfead/msgpack-1.1.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a51abd48c6d8ac89e0cfd4fe177c61481aca2d5e7ba42044fd218cfd8ea9899f", size = 385356 }, + { url = "https://files.pythonhosted.org/packages/57/52/406795ba478dc1c890559dd4e89280fa86506608a28ccf3a72fbf45df9f5/msgpack-1.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2137773500afa5494a61b1208619e3871f75f27b03bcfca7b3a7023284140247", size = 383028 }, + { url = "https://files.pythonhosted.org/packages/e7/69/053b6549bf90a3acadcd8232eae03e2fefc87f066a5b9fbb37e2e608859f/msgpack-1.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:398b713459fea610861c8a7b62a6fec1882759f308ae0795b5413ff6a160cf3c", size = 391100 }, + { url = "https://files.pythonhosted.org/packages/23/f0/d4101d4da054f04274995ddc4086c2715d9b93111eb9ed49686c0f7ccc8a/msgpack-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:06f5fd2f6bb2a7914922d935d3b8bb4a7fff3a9a91cfce6d06c13bc42bec975b", size = 394254 }, + { url = "https://files.pythonhosted.org/packages/1c/12/cf07458f35d0d775ff3a2dc5559fa2e1fcd06c46f1ef510e594ebefdca01/msgpack-1.1.0-cp312-cp312-win32.whl", hash = "sha256:ad33e8400e4ec17ba782f7b9cf868977d867ed784a1f5f2ab46e7ba53b6e1e1b", size = 69085 }, + { url = "https://files.pythonhosted.org/packages/73/80/2708a4641f7d553a63bc934a3eb7214806b5b39d200133ca7f7afb0a53e8/msgpack-1.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:115a7af8ee9e8cddc10f87636767857e7e3717b7a2e97379dc2054712693e90f", size = 75347 }, + { url = "https://files.pythonhosted.org/packages/c8/b0/380f5f639543a4ac413e969109978feb1f3c66e931068f91ab6ab0f8be00/msgpack-1.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:071603e2f0771c45ad9bc65719291c568d4edf120b44eb36324dcb02a13bfddf", size = 151142 }, + { url = "https://files.pythonhosted.org/packages/c8/ee/be57e9702400a6cb2606883d55b05784fada898dfc7fd12608ab1fdb054e/msgpack-1.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0f92a83b84e7c0749e3f12821949d79485971f087604178026085f60ce109330", size = 84523 }, + { url = "https://files.pythonhosted.org/packages/7e/3a/2919f63acca3c119565449681ad08a2f84b2171ddfcff1dba6959db2cceb/msgpack-1.1.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4a1964df7b81285d00a84da4e70cb1383f2e665e0f1f2a7027e683956d04b734", size = 81556 }, + { url = "https://files.pythonhosted.org/packages/7c/43/a11113d9e5c1498c145a8925768ea2d5fce7cbab15c99cda655aa09947ed/msgpack-1.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59caf6a4ed0d164055ccff8fe31eddc0ebc07cf7326a2aaa0dbf7a4001cd823e", size = 392105 }, + { url = "https://files.pythonhosted.org/packages/2d/7b/2c1d74ca6c94f70a1add74a8393a0138172207dc5de6fc6269483519d048/msgpack-1.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0907e1a7119b337971a689153665764adc34e89175f9a34793307d9def08e6ca", size = 399979 }, + { url = "https://files.pythonhosted.org/packages/82/8c/cf64ae518c7b8efc763ca1f1348a96f0e37150061e777a8ea5430b413a74/msgpack-1.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:65553c9b6da8166e819a6aa90ad15288599b340f91d18f60b2061f402b9a4915", size = 383816 }, + { url = "https://files.pythonhosted.org/packages/69/86/a847ef7a0f5ef3fa94ae20f52a4cacf596a4e4a010197fbcc27744eb9a83/msgpack-1.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:7a946a8992941fea80ed4beae6bff74ffd7ee129a90b4dd5cf9c476a30e9708d", size = 380973 }, + { url = "https://files.pythonhosted.org/packages/aa/90/c74cf6e1126faa93185d3b830ee97246ecc4fe12cf9d2d31318ee4246994/msgpack-1.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:4b51405e36e075193bc051315dbf29168d6141ae2500ba8cd80a522964e31434", size = 387435 }, + { url = "https://files.pythonhosted.org/packages/7a/40/631c238f1f338eb09f4acb0f34ab5862c4e9d7eda11c1b685471a4c5ea37/msgpack-1.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b4c01941fd2ff87c2a934ee6055bda4ed353a7846b8d4f341c428109e9fcde8c", size = 399082 }, + { url = "https://files.pythonhosted.org/packages/e9/1b/fa8a952be252a1555ed39f97c06778e3aeb9123aa4cccc0fd2acd0b4e315/msgpack-1.1.0-cp313-cp313-win32.whl", hash = "sha256:7c9a35ce2c2573bada929e0b7b3576de647b0defbd25f5139dcdaba0ae35a4cc", size = 69037 }, + { url = "https://files.pythonhosted.org/packages/b6/bc/8bd826dd03e022153bfa1766dcdec4976d6c818865ed54223d71f07862b3/msgpack-1.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:bce7d9e614a04d0883af0b3d4d501171fbfca038f12c77fa838d9f198147a23f", size = 75140 }, +] + +[[package]] +name = "mypy-extensions" +version = "1.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/98/a4/1ab47638b92648243faf97a5aeb6ea83059cc3624972ab6b8d2316078d3f/mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782", size = 4433 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2a/e2/5d3f6ada4297caebe1a2add3b126fe800c96f56dbe5d1988a2cbe0b267aa/mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d", size = 4695 }, +] + +[[package]] +name = "nbclient" +version = "0.10.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "nbformat" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e2/d2/39bc36604f24bccd44d374ac34769bc58c53a1da5acd1e83f0165aa4940e/nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09", size = 62246 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/66/e8/00517a23d3eeaed0513e718fbc94aab26eaa1758f5690fc8578839791c79/nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f", size = 25318 }, +] + +[[package]] +name = "nbconvert" +version = "7.16.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "beautifulsoup4" }, + { name = "bleach" }, + { name = "defusedxml" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyterlab-pygments" }, + { name = "markupsafe" }, + { name = "mistune" }, + { name = "nbclient" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "pandocfilters" }, + { name = "pygments" }, + { name = "tinycss2" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/af/e8/ba521a033b21132008e520c28ceb818f9f092da5f0261e94e509401b29f9/nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4", size = 854422 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b8/bb/bb5b6a515d1584aa2fd89965b11db6632e4bdc69495a52374bcc36e56cfa/nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3", size = 257388 }, +] + +[[package]] +name = "nbformat" +version = "5.10.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "fastjsonschema" }, + { name = "jsonschema" }, + { name = "jupyter-core" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6d/fd/91545e604bc3dad7dca9ed03284086039b294c6b3d75c0d2fa45f9e9caf3/nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a", size = 142749 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b", size = 78454 }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195 }, +] + +[[package]] +name = "numpy" +version = "2.1.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4b/d1/8a730ea07f4a37d94f9172f4ce1d81064b7a64766b460378be278952de75/numpy-2.1.2.tar.gz", hash = "sha256:13532a088217fa624c99b843eeb54640de23b3414b14aa66d023805eb731066c", size = 18878063 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1c/a2/40a76d357f168e9f9f06d6cc2c8e22dd5fb2bfbe63fe2c433057258c145a/numpy-2.1.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:30d53720b726ec36a7f88dc873f0eec8447fbc93d93a8f079dfac2629598d6ee", size = 21150947 }, + { url = "https://files.pythonhosted.org/packages/b5/d0/ba271ea9108d7278d3889a7eb38d77370a88713fb94339964e71ac184d4a/numpy-2.1.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8d3ca0a72dd8846eb6f7dfe8f19088060fcb76931ed592d29128e0219652884", size = 13758184 }, + { url = "https://files.pythonhosted.org/packages/7c/b9/5c6507439cd756201010f7937bf90712c2469052ae094584af14557dd64f/numpy-2.1.2-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:fc44e3c68ff00fd991b59092a54350e6e4911152682b4782f68070985aa9e648", size = 5354091 }, + { url = "https://files.pythonhosted.org/packages/60/21/7938cf724d9e84e45fb886f3fc794ab431d71facfebc261e3e9f19f3233a/numpy-2.1.2-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:7c1c60328bd964b53f8b835df69ae8198659e2b9302ff9ebb7de4e5a5994db3d", size = 6887169 }, + { url = "https://files.pythonhosted.org/packages/09/8d/42a124657f5d31902fca73921b25a0d022cead2b32ce7e6975762cd2995a/numpy-2.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6cdb606a7478f9ad91c6283e238544451e3a95f30fb5467fbf715964341a8a86", size = 13888165 }, + { url = "https://files.pythonhosted.org/packages/fb/25/ba023652a39a2c127200e85aed975fc6119b421e2c348e5d0171e2046edb/numpy-2.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d666cb72687559689e9906197e3bec7b736764df6a2e58ee265e360663e9baf7", size = 16326954 }, + { url = "https://files.pythonhosted.org/packages/34/58/23e6b07fad492b7c47cf09cd8bad6983658f0f925b6c535fd008e3e86274/numpy-2.1.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c6eef7a2dbd0abfb0d9eaf78b73017dbfd0b54051102ff4e6a7b2980d5ac1a03", size = 16702916 }, + { url = "https://files.pythonhosted.org/packages/91/24/37b5cf2dc7d385ac97f7b7fe50cba312abb70a2a5eac74c23af028811f73/numpy-2.1.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:12edb90831ff481f7ef5f6bc6431a9d74dc0e5ff401559a71e5e4611d4f2d466", size = 14384372 }, + { url = "https://files.pythonhosted.org/packages/ea/ec/0f6d471058a01d1a05a50d2793898de1549280fa715a8537987ee866b5d9/numpy-2.1.2-cp310-cp310-win32.whl", hash = "sha256:a65acfdb9c6ebb8368490dbafe83c03c7e277b37e6857f0caeadbbc56e12f4fb", size = 6535361 }, + { url = "https://files.pythonhosted.org/packages/c2/3d/293cc5927f916a7bc6bf74da8f6defab63d1b13f0959d7e21878ad8a20d8/numpy-2.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:860ec6e63e2c5c2ee5e9121808145c7bf86c96cca9ad396c0bd3e0f2798ccbe2", size = 12865501 }, + { url = "https://files.pythonhosted.org/packages/aa/9c/9a6ec3ae89cd0648d419781284308f2956d2a61d932b5ac9682c956a171b/numpy-2.1.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b42a1a511c81cc78cbc4539675713bbcf9d9c3913386243ceff0e9429ca892fe", size = 21154845 }, + { url = "https://files.pythonhosted.org/packages/02/69/9f05c4ecc75fabf297b17743996371b4c3dfc4d92e15c5c38d8bb3db8d74/numpy-2.1.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:faa88bc527d0f097abdc2c663cddf37c05a1c2f113716601555249805cf573f1", size = 13789409 }, + { url = "https://files.pythonhosted.org/packages/34/4e/f95c99217bf77bbfaaf660d693c10bd0dc03b6032d19316d316088c9e479/numpy-2.1.2-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:c82af4b2ddd2ee72d1fc0c6695048d457e00b3582ccde72d8a1c991b808bb20f", size = 5352097 }, + { url = "https://files.pythonhosted.org/packages/06/13/f5d87a497c16658e9af8920449b0b5692b469586b8231340c672962071c5/numpy-2.1.2-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:13602b3174432a35b16c4cfb5de9a12d229727c3dd47a6ce35111f2ebdf66ff4", size = 6891195 }, + { url = "https://files.pythonhosted.org/packages/6c/89/691ac07429ac061b344d5e37fa8e94be51a6017734aea15f2d9d7c6d119a/numpy-2.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1ebec5fd716c5a5b3d8dfcc439be82a8407b7b24b230d0ad28a81b61c2f4659a", size = 13895153 }, + { url = "https://files.pythonhosted.org/packages/23/69/538317f0d925095537745f12aced33be1570bbdc4acde49b33748669af96/numpy-2.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2b49c3c0804e8ecb05d59af8386ec2f74877f7ca8fd9c1e00be2672e4d399b1", size = 16338306 }, + { url = "https://files.pythonhosted.org/packages/af/03/863fe7062c2106d3c151f7df9353f2ae2237c1dd6900f127a3eb1f24cb1b/numpy-2.1.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2cbba4b30bf31ddbe97f1c7205ef976909a93a66bb1583e983adbd155ba72ac2", size = 16710893 }, + { url = "https://files.pythonhosted.org/packages/70/77/0ad9efe25482009873f9660d29a40a8c41a6f0e8b541195e3c95c70684c5/numpy-2.1.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8e00ea6fc82e8a804433d3e9cedaa1051a1422cb6e443011590c14d2dea59146", size = 14398048 }, + { url = "https://files.pythonhosted.org/packages/3e/0f/e785fe75544db9f2b0bb1c181e13ceff349ce49753d807fd9672916aa06d/numpy-2.1.2-cp311-cp311-win32.whl", hash = "sha256:5006b13a06e0b38d561fab5ccc37581f23c9511879be7693bd33c7cd15ca227c", size = 6533458 }, + { url = "https://files.pythonhosted.org/packages/d4/96/450054662295125af861d48d2c4bc081dadcf1974a879b2104613157aa62/numpy-2.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:f1eb068ead09f4994dec71c24b2844f1e4e4e013b9629f812f292f04bd1510d9", size = 12870896 }, + { url = "https://files.pythonhosted.org/packages/a0/7d/554a6838f37f3ada5a55f25173c619d556ae98092a6e01afb6e710501d70/numpy-2.1.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d7bf0a4f9f15b32b5ba53147369e94296f5fffb783db5aacc1be15b4bf72f43b", size = 20848077 }, + { url = "https://files.pythonhosted.org/packages/b0/29/cb48a402ea879e645b16218718f3f7d9588a77d674a9dcf22e4c43487636/numpy-2.1.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b1d0fcae4f0949f215d4632be684a539859b295e2d0cb14f78ec231915d644db", size = 13493242 }, + { url = "https://files.pythonhosted.org/packages/56/44/f899b0581766c230da42f751b7b8896d096640b19b312164c267e48d36cb/numpy-2.1.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:f751ed0a2f250541e19dfca9f1eafa31a392c71c832b6bb9e113b10d050cb0f1", size = 5089219 }, + { url = "https://files.pythonhosted.org/packages/79/8f/b987070d45161a7a4504afc67ed38544ed2c0ed5576263599a0402204a9c/numpy-2.1.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:bd33f82e95ba7ad632bc57837ee99dba3d7e006536200c4e9124089e1bf42426", size = 6620167 }, + { url = "https://files.pythonhosted.org/packages/c4/a7/af3329fda3c3ec31d9b650e42bbcd3422fc62a765cbb1405fde4177a0996/numpy-2.1.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b8cde4f11f0a975d1fd59373b32e2f5a562ade7cde4f85b7137f3de8fbb29a0", size = 13604905 }, + { url = "https://files.pythonhosted.org/packages/9b/b4/e3c7e6fab0f77fff6194afa173d1f2342073d91b1d3b4b30b17c3fb4407a/numpy-2.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6d95f286b8244b3649b477ac066c6906fbb2905f8ac19b170e2175d3d799f4df", size = 16041825 }, + { url = "https://files.pythonhosted.org/packages/e9/50/6828e66a78aa03147c111f84d55f33ce2dde547cb578d6744a3b06a0124b/numpy-2.1.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ab4754d432e3ac42d33a269c8567413bdb541689b02d93788af4131018cbf366", size = 16409541 }, + { url = "https://files.pythonhosted.org/packages/bf/72/66af7916d9c3c6dbfbc8acdd4930c65461e1953374a2bc43d00f948f004a/numpy-2.1.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e585c8ae871fd38ac50598f4763d73ec5497b0de9a0ab4ef5b69f01c6a046142", size = 14081134 }, + { url = "https://files.pythonhosted.org/packages/dc/5a/59a67d84f33fe00ae74f0b5b69dd4f93a586a4aba7f7e19b54b2133db038/numpy-2.1.2-cp312-cp312-win32.whl", hash = "sha256:9c6c754df29ce6a89ed23afb25550d1c2d5fdb9901d9c67a16e0b16eaf7e2550", size = 6237784 }, + { url = "https://files.pythonhosted.org/packages/4c/79/73735a6a5dad6059c085f240a4e74c9270feccd2bc66e4d31b5ca01d329c/numpy-2.1.2-cp312-cp312-win_amd64.whl", hash = "sha256:456e3b11cb79ac9946c822a56346ec80275eaf2950314b249b512896c0d2505e", size = 12568254 }, + { url = "https://files.pythonhosted.org/packages/16/72/716fa1dbe92395a9a623d5049203ff8ddb0cfce65b9df9117c3696ccc011/numpy-2.1.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a84498e0d0a1174f2b3ed769b67b656aa5460c92c9554039e11f20a05650f00d", size = 20834690 }, + { url = "https://files.pythonhosted.org/packages/1e/fb/3e85a39511586053b5c6a59a643879e376fae22230ebfef9cfabb0e032e2/numpy-2.1.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4d6ec0d4222e8ffdab1744da2560f07856421b367928026fb540e1945f2eeeaf", size = 13507474 }, + { url = "https://files.pythonhosted.org/packages/35/eb/5677556d9ba13436dab51e129f98d4829d95cd1b6bd0e199c14485a4bdb9/numpy-2.1.2-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:259ec80d54999cc34cd1eb8ded513cb053c3bf4829152a2e00de2371bd406f5e", size = 5074742 }, + { url = "https://files.pythonhosted.org/packages/3e/c5/6c5ef5ba41b65a7e51bed50dbf3e1483eb578055633dd013e811a28e96a1/numpy-2.1.2-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:675c741d4739af2dc20cd6c6a5c4b7355c728167845e3c6b0e824e4e5d36a6c3", size = 6606787 }, + { url = "https://files.pythonhosted.org/packages/08/ac/f2f29dd4fd325b379c7dc932a0ebab22f0e031dbe80b2f6019b291a3a544/numpy-2.1.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05b2d4e667895cc55e3ff2b56077e4c8a5604361fc21a042845ea3ad67465aa8", size = 13601333 }, + { url = "https://files.pythonhosted.org/packages/44/26/63f5f4e5089654dfb858f4892215ed968cd1a68e6f4a83f9961f84f855cb/numpy-2.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:43cca367bf94a14aca50b89e9bc2061683116cfe864e56740e083392f533ce7a", size = 16038090 }, + { url = "https://files.pythonhosted.org/packages/1d/21/015e0594de9c3a8d5edd24943d2bd23f102ec71aec026083f822f86497e2/numpy-2.1.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:76322dcdb16fccf2ac56f99048af32259dcc488d9b7e25b51e5eca5147a3fb98", size = 16410865 }, + { url = "https://files.pythonhosted.org/packages/df/01/c1bcf9e6025d79077fbf3f3ee503b50aa7bfabfcd8f4b54f5829f4c00f3f/numpy-2.1.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:32e16a03138cabe0cb28e1007ee82264296ac0983714094380b408097a418cfe", size = 14078077 }, + { url = "https://files.pythonhosted.org/packages/ba/06/db9d127d63bd11591770ba9f3d960f8041e0f895184b9351d4b1b5b56983/numpy-2.1.2-cp313-cp313-win32.whl", hash = "sha256:242b39d00e4944431a3cd2db2f5377e15b5785920421993770cddb89992c3f3a", size = 6234904 }, + { url = "https://files.pythonhosted.org/packages/a9/96/9f61f8f95b6e0ea0aa08633b704c75d1882bdcb331bdf8bfd63263b25b00/numpy-2.1.2-cp313-cp313-win_amd64.whl", hash = "sha256:f2ded8d9b6f68cc26f8425eda5d3877b47343e68ca23d0d0846f4d312ecaa445", size = 12561910 }, + { url = "https://files.pythonhosted.org/packages/36/b8/033f627821784a48e8f75c218033471eebbaacdd933f8979c79637a1b44b/numpy-2.1.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:2ffef621c14ebb0188a8633348504a35c13680d6da93ab5cb86f4e54b7e922b5", size = 20857719 }, + { url = "https://files.pythonhosted.org/packages/96/46/af5726fde5b74ed83f2f17a73386d399319b7ed4d51279fb23b721d0816d/numpy-2.1.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:ad369ed238b1959dfbade9018a740fb9392c5ac4f9b5173f420bd4f37ba1f7a0", size = 13518826 }, + { url = "https://files.pythonhosted.org/packages/db/6e/8ce677edf36da1c4dae80afe5529f47690697eb55b4864673af260ccea7b/numpy-2.1.2-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:d82075752f40c0ddf57e6e02673a17f6cb0f8eb3f587f63ca1eaab5594da5b17", size = 5115036 }, + { url = "https://files.pythonhosted.org/packages/6a/ba/3cce44fb1b8438042c11847048812a776f75ee0e7070179c22e4cfbf420c/numpy-2.1.2-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:1600068c262af1ca9580a527d43dc9d959b0b1d8e56f8a05d830eea39b7c8af6", size = 6628641 }, + { url = "https://files.pythonhosted.org/packages/59/c8/e722998720ccbd35ffbcf1d1b8ed0aa2304af88d3f1c38e06ebf983599b3/numpy-2.1.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a26ae94658d3ba3781d5e103ac07a876b3e9b29db53f68ed7df432fd033358a8", size = 13574803 }, + { url = "https://files.pythonhosted.org/packages/7c/8e/fc1fdd83a55476765329ac2913321c4aed5b082a7915095628c4ca30ea72/numpy-2.1.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13311c2db4c5f7609b462bc0f43d3c465424d25c626d95040f073e30f7570e35", size = 16021174 }, + { url = "https://files.pythonhosted.org/packages/2a/b6/a790742aa88067adb4bd6c89a946778c1417d4deaeafce3ca928f26d4c52/numpy-2.1.2-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:2abbf905a0b568706391ec6fa15161fad0fb5d8b68d73c461b3c1bab6064dd62", size = 16400117 }, + { url = "https://files.pythonhosted.org/packages/48/6f/129e3c17e3befe7fefdeaa6890f4c4df3f3cf0831aa053802c3862da67aa/numpy-2.1.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:ef444c57d664d35cac4e18c298c47d7b504c66b17c2ea91312e979fcfbdfb08a", size = 14066202 }, + { url = "https://files.pythonhosted.org/packages/73/c9/3e1d6bbe6d3d2e2c5a9483b24b2f29a229b323f62054278a3bba7fee11e5/numpy-2.1.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:bdd407c40483463898b84490770199d5714dcc9dd9b792f6c6caccc523c00952", size = 20981945 }, + { url = "https://files.pythonhosted.org/packages/6e/62/989c4988bde1a8e08117fccc3bab73d2886421fb98cde597168714f3c54e/numpy-2.1.2-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:da65fb46d4cbb75cb417cddf6ba5e7582eb7bb0b47db4b99c9fe5787ce5d91f5", size = 6750558 }, + { url = "https://files.pythonhosted.org/packages/53/b1/00ef9f30975f1312a53257f68e57b4513d14d537e03d507e2773a684b1e8/numpy-2.1.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c193d0b0238638e6fc5f10f1b074a6993cb13b0b431f64079a509d63d3aa8b7", size = 16141552 }, + { url = "https://files.pythonhosted.org/packages/c0/ec/0c04903b48dfea6be1d7b47ba70f98709fb7198fd970784a1400c391d522/numpy-2.1.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a7d80b2e904faa63068ead63107189164ca443b42dd1930299e0d1cb041cec2e", size = 12789924 }, +] + +[[package]] +name = "opt-einsum" +version = "3.4.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8c/b9/2ac072041e899a52f20cf9510850ff58295003aa75525e58343591b0cbfb/opt_einsum-3.4.0.tar.gz", hash = "sha256:96ca72f1b886d148241348783498194c577fa30a8faac108586b14f1ba4473ac", size = 63004 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl", hash = "sha256:69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd", size = 71932 }, +] + +[[package]] +name = "optax" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "absl-py" }, + { name = "chex" }, + { name = "etils", extra = ["epy"] }, + { name = "jax" }, + { name = "jaxlib" }, + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d6/5f/e8b09028b37a8c1c159359e59469f3504b550910d472d8ee59543b1735d9/optax-0.2.3.tar.gz", hash = "sha256:ec7ab925440b0c5a512e1f24fba0fb3e7d760a7fd5d2496d7a691e9d37da01d9", size = 205212 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/8b/7032a6788205e9da398a8a33e1030ee9a22bd9289126e5afed9aac33bcde/optax-0.2.3-py3-none-any.whl", hash = "sha256:083e603dcd731d7e74d99f71c12f77937dd53f79001b4c09c290e4f47dd2e94f", size = 289647 }, +] + +[[package]] +name = "orbax-checkpoint" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "absl-py" }, + { name = "etils", extra = ["epath", "epy"] }, + { name = "humanize" }, + { name = "jax" }, + { name = "msgpack" }, + { name = "nest-asyncio" }, + { name = "numpy" }, + { name = "protobuf" }, + { name = "pyyaml" }, + { name = "tensorstore" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b7/5a/e07d3b2a9dacc6fe882a255080d4af3ac180bc190fd8ce22ab64cf0bfe26/orbax_checkpoint-0.7.0.tar.gz", hash = "sha256:f5a59babbf86fdafacddcfd2fb1c6d45b4fa0685b38a87a4598a5702bb70a657", size = 201557 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3a/63/45b63b51b320d104f21cb7f2a5d0ae2b37558e24296c02d33521a291ad87/orbax_checkpoint-0.7.0-py3-none-any.whl", hash = "sha256:0469030dd70729f7416981712a9ea8a82bd02c65ca82c933675c9e3ed4763f9b", size = 279660 }, +] + +[[package]] +name = "packaging" +version = "24.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/51/65/50db4dda066951078f0a96cf12f4b9ada6e4b811516bf0262c0f4f7064d4/packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002", size = 148788 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/08/aa/cc0199a5f0ad350994d660967a8efb233fe0416e4639146c089643407ce6/packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124", size = 53985 }, +] + +[[package]] +name = "paginate" +version = "0.5.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ec/46/68dde5b6bc00c1296ec6466ab27dddede6aec9af1b99090e1107091b3b84/paginate-0.5.7.tar.gz", hash = "sha256:22bd083ab41e1a8b4f3690544afb2c60c25e5c9a63a30fa2f483f6c60c8e5945", size = 19252 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/90/96/04b8e52da071d28f5e21a805b19cb9390aa17a47462ac87f5e2696b9566d/paginate-0.5.7-py2.py3-none-any.whl", hash = "sha256:b885e2af73abcf01d9559fd5216b57ef722f8c42affbb63942377668e35c7591", size = 13746 }, +] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/70/6f/3dd4940bbe001c06a65f88e36bad298bc7a0de5036115639926b0c5c0458/pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e", size = 8454 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc", size = 8663 }, +] + +[[package]] +name = "parso" +version = "0.8.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/94/68e2e17afaa9169cf6412ab0f28623903be73d1b32e208d9e8e541bb086d/parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d", size = 400609 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c6/ac/dac4a63f978e4dcb3c6d3a78c4d8e0192a113d288502a1216950c41b1027/parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18", size = 103650 }, +] + +[[package]] +name = "pathspec" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191 }, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772 }, +] + +[[package]] +name = "pillow" +version = "11.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a5/26/0d95c04c868f6bdb0c447e3ee2de5564411845e36a858cfd63766bc7b563/pillow-11.0.0.tar.gz", hash = "sha256:72bacbaf24ac003fea9bff9837d1eedb6088758d41e100c1552930151f677739", size = 46737780 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/98/fb/a6ce6836bd7fd93fbf9144bf54789e02babc27403b50a9e1583ee877d6da/pillow-11.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:6619654954dc4936fcff82db8eb6401d3159ec6be81e33c6000dfd76ae189947", size = 3154708 }, + { url = "https://files.pythonhosted.org/packages/6a/1d/1f51e6e912d8ff316bb3935a8cda617c801783e0b998bf7a894e91d3bd4c/pillow-11.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3c5ac4bed7519088103d9450a1107f76308ecf91d6dabc8a33a2fcfb18d0fba", size = 2979223 }, + { url = "https://files.pythonhosted.org/packages/90/83/e2077b0192ca8a9ef794dbb74700c7e48384706467067976c2a95a0f40a1/pillow-11.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a65149d8ada1055029fcb665452b2814fe7d7082fcb0c5bed6db851cb69b2086", size = 4183167 }, + { url = "https://files.pythonhosted.org/packages/0e/74/467af0146970a98349cdf39e9b79a6cc8a2e7558f2c01c28a7b6b85c5bda/pillow-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88a58d8ac0cc0e7f3a014509f0455248a76629ca9b604eca7dc5927cc593c5e9", size = 4283912 }, + { url = "https://files.pythonhosted.org/packages/85/b1/d95d4f7ca3a6c1ae120959605875a31a3c209c4e50f0029dc1a87566cf46/pillow-11.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:c26845094b1af3c91852745ae78e3ea47abf3dbcd1cf962f16b9a5fbe3ee8488", size = 4195815 }, + { url = "https://files.pythonhosted.org/packages/41/c3/94f33af0762ed76b5a237c5797e088aa57f2b7fa8ee7932d399087be66a8/pillow-11.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:1a61b54f87ab5786b8479f81c4b11f4d61702830354520837f8cc791ebba0f5f", size = 4366117 }, + { url = "https://files.pythonhosted.org/packages/ba/3c/443e7ef01f597497268899e1cca95c0de947c9bbf77a8f18b3c126681e5d/pillow-11.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:674629ff60030d144b7bca2b8330225a9b11c482ed408813924619c6f302fdbb", size = 4278607 }, + { url = "https://files.pythonhosted.org/packages/26/95/1495304448b0081e60c0c5d63f928ef48bb290acee7385804426fa395a21/pillow-11.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:598b4e238f13276e0008299bd2482003f48158e2b11826862b1eb2ad7c768b97", size = 4410685 }, + { url = "https://files.pythonhosted.org/packages/45/da/861e1df971ef0de9870720cb309ca4d553b26a9483ec9be3a7bf1de4a095/pillow-11.0.0-cp310-cp310-win32.whl", hash = "sha256:9a0f748eaa434a41fccf8e1ee7a3eed68af1b690e75328fd7a60af123c193b50", size = 2249185 }, + { url = "https://files.pythonhosted.org/packages/d5/4e/78f7c5202ea2a772a5ab05069c1b82503e6353cd79c7e474d4945f4b82c3/pillow-11.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:a5629742881bcbc1f42e840af185fd4d83a5edeb96475a575f4da50d6ede337c", size = 2566726 }, + { url = "https://files.pythonhosted.org/packages/77/e4/6e84eada35cbcc646fc1870f72ccfd4afacb0fae0c37ffbffe7f5dc24bf1/pillow-11.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:ee217c198f2e41f184f3869f3e485557296d505b5195c513b2bfe0062dc537f1", size = 2254585 }, + { url = "https://files.pythonhosted.org/packages/f0/eb/f7e21b113dd48a9c97d364e0915b3988c6a0b6207652f5a92372871b7aa4/pillow-11.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1c1d72714f429a521d8d2d018badc42414c3077eb187a59579f28e4270b4b0fc", size = 3154705 }, + { url = "https://files.pythonhosted.org/packages/25/b3/2b54a1d541accebe6bd8b1358b34ceb2c509f51cb7dcda8687362490da5b/pillow-11.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:499c3a1b0d6fc8213519e193796eb1a86a1be4b1877d678b30f83fd979811d1a", size = 2979222 }, + { url = "https://files.pythonhosted.org/packages/20/12/1a41eddad8265c5c19dda8fb6c269ce15ee25e0b9f8f26286e6202df6693/pillow-11.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8b2351c85d855293a299038e1f89db92a2f35e8d2f783489c6f0b2b5f3fe8a3", size = 4190220 }, + { url = "https://files.pythonhosted.org/packages/a9/9b/8a8c4d07d77447b7457164b861d18f5a31ae6418ef5c07f6f878fa09039a/pillow-11.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f4dba50cfa56f910241eb7f883c20f1e7b1d8f7d91c750cd0b318bad443f4d5", size = 4291399 }, + { url = "https://files.pythonhosted.org/packages/fc/e4/130c5fab4a54d3991129800dd2801feeb4b118d7630148cd67f0e6269d4c/pillow-11.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:5ddbfd761ee00c12ee1be86c9c0683ecf5bb14c9772ddbd782085779a63dd55b", size = 4202709 }, + { url = "https://files.pythonhosted.org/packages/39/63/b3fc299528d7df1f678b0666002b37affe6b8751225c3d9c12cf530e73ed/pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa", size = 4372556 }, + { url = "https://files.pythonhosted.org/packages/c6/a6/694122c55b855b586c26c694937d36bb8d3b09c735ff41b2f315c6e66a10/pillow-11.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b4fd7bd29610a83a8c9b564d457cf5bd92b4e11e79a4ee4716a63c959699b306", size = 4287187 }, + { url = "https://files.pythonhosted.org/packages/ba/a9/f9d763e2671a8acd53d29b1e284ca298bc10a595527f6be30233cdb9659d/pillow-11.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:cb929ca942d0ec4fac404cbf520ee6cac37bf35be479b970c4ffadf2b6a1cad9", size = 4418468 }, + { url = "https://files.pythonhosted.org/packages/6e/0e/b5cbad2621377f11313a94aeb44ca55a9639adabcaaa073597a1925f8c26/pillow-11.0.0-cp311-cp311-win32.whl", hash = "sha256:006bcdd307cc47ba43e924099a038cbf9591062e6c50e570819743f5607404f5", size = 2249249 }, + { url = "https://files.pythonhosted.org/packages/dc/83/1470c220a4ff06cd75fc609068f6605e567ea51df70557555c2ab6516b2c/pillow-11.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:52a2d8323a465f84faaba5236567d212c3668f2ab53e1c74c15583cf507a0291", size = 2566769 }, + { url = "https://files.pythonhosted.org/packages/52/98/def78c3a23acee2bcdb2e52005fb2810ed54305602ec1bfcfab2bda6f49f/pillow-11.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:16095692a253047fe3ec028e951fa4221a1f3ed3d80c397e83541a3037ff67c9", size = 2254611 }, + { url = "https://files.pythonhosted.org/packages/1c/a3/26e606ff0b2daaf120543e537311fa3ae2eb6bf061490e4fea51771540be/pillow-11.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2c0a187a92a1cb5ef2c8ed5412dd8d4334272617f532d4ad4de31e0495bd923", size = 3147642 }, + { url = "https://files.pythonhosted.org/packages/4f/d5/1caabedd8863526a6cfa44ee7a833bd97f945dc1d56824d6d76e11731939/pillow-11.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:084a07ef0821cfe4858fe86652fffac8e187b6ae677e9906e192aafcc1b69903", size = 2978999 }, + { url = "https://files.pythonhosted.org/packages/d9/ff/5a45000826a1aa1ac6874b3ec5a856474821a1b59d838c4f6ce2ee518fe9/pillow-11.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8069c5179902dcdce0be9bfc8235347fdbac249d23bd90514b7a47a72d9fecf4", size = 4196794 }, + { url = "https://files.pythonhosted.org/packages/9d/21/84c9f287d17180f26263b5f5c8fb201de0f88b1afddf8a2597a5c9fe787f/pillow-11.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f02541ef64077f22bf4924f225c0fd1248c168f86e4b7abdedd87d6ebaceab0f", size = 4300762 }, + { url = "https://files.pythonhosted.org/packages/84/39/63fb87cd07cc541438b448b1fed467c4d687ad18aa786a7f8e67b255d1aa/pillow-11.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:fcb4621042ac4b7865c179bb972ed0da0218a076dc1820ffc48b1d74c1e37fe9", size = 4210468 }, + { url = "https://files.pythonhosted.org/packages/7f/42/6e0f2c2d5c60f499aa29be14f860dd4539de322cd8fb84ee01553493fb4d/pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:00177a63030d612148e659b55ba99527803288cea7c75fb05766ab7981a8c1b7", size = 4381824 }, + { url = "https://files.pythonhosted.org/packages/31/69/1ef0fb9d2f8d2d114db982b78ca4eeb9db9a29f7477821e160b8c1253f67/pillow-11.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8853a3bf12afddfdf15f57c4b02d7ded92c7a75a5d7331d19f4f9572a89c17e6", size = 4296436 }, + { url = "https://files.pythonhosted.org/packages/44/ea/dad2818c675c44f6012289a7c4f46068c548768bc6c7f4e8c4ae5bbbc811/pillow-11.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3107c66e43bda25359d5ef446f59c497de2b5ed4c7fdba0894f8d6cf3822dafc", size = 4429714 }, + { url = "https://files.pythonhosted.org/packages/af/3a/da80224a6eb15bba7a0dcb2346e2b686bb9bf98378c0b4353cd88e62b171/pillow-11.0.0-cp312-cp312-win32.whl", hash = "sha256:86510e3f5eca0ab87429dd77fafc04693195eec7fd6a137c389c3eeb4cfb77c6", size = 2249631 }, + { url = "https://files.pythonhosted.org/packages/57/97/73f756c338c1d86bb802ee88c3cab015ad7ce4b838f8a24f16b676b1ac7c/pillow-11.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:8ec4a89295cd6cd4d1058a5e6aec6bf51e0eaaf9714774e1bfac7cfc9051db47", size = 2567533 }, + { url = "https://files.pythonhosted.org/packages/0b/30/2b61876e2722374558b871dfbfcbe4e406626d63f4f6ed92e9c8e24cac37/pillow-11.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:27a7860107500d813fcd203b4ea19b04babe79448268403172782754870dac25", size = 2254890 }, + { url = "https://files.pythonhosted.org/packages/63/24/e2e15e392d00fcf4215907465d8ec2a2f23bcec1481a8ebe4ae760459995/pillow-11.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcd1fb5bb7b07f64c15618c89efcc2cfa3e95f0e3bcdbaf4642509de1942a699", size = 3147300 }, + { url = "https://files.pythonhosted.org/packages/43/72/92ad4afaa2afc233dc44184adff289c2e77e8cd916b3ddb72ac69495bda3/pillow-11.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0e038b0745997c7dcaae350d35859c9715c71e92ffb7e0f4a8e8a16732150f38", size = 2978742 }, + { url = "https://files.pythonhosted.org/packages/9e/da/c8d69c5bc85d72a8523fe862f05ababdc52c0a755cfe3d362656bb86552b/pillow-11.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ae08bd8ffc41aebf578c2af2f9d8749d91f448b3bfd41d7d9ff573d74f2a6b2", size = 4194349 }, + { url = "https://files.pythonhosted.org/packages/cd/e8/686d0caeed6b998351d57796496a70185376ed9c8ec7d99e1d19ad591fc6/pillow-11.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d69bfd8ec3219ae71bcde1f942b728903cad25fafe3100ba2258b973bd2bc1b2", size = 4298714 }, + { url = "https://files.pythonhosted.org/packages/ec/da/430015cec620d622f06854be67fd2f6721f52fc17fca8ac34b32e2d60739/pillow-11.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:61b887f9ddba63ddf62fd02a3ba7add935d053b6dd7d58998c630e6dbade8527", size = 4208514 }, + { url = "https://files.pythonhosted.org/packages/44/ae/7e4f6662a9b1cb5f92b9cc9cab8321c381ffbee309210940e57432a4063a/pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa", size = 4380055 }, + { url = "https://files.pythonhosted.org/packages/74/d5/1a807779ac8a0eeed57f2b92a3c32ea1b696e6140c15bd42eaf908a261cd/pillow-11.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:73e3a0200cdda995c7e43dd47436c1548f87a30bb27fb871f352a22ab8dcf45f", size = 4296751 }, + { url = "https://files.pythonhosted.org/packages/38/8c/5fa3385163ee7080bc13026d59656267daaaaf3c728c233d530e2c2757c8/pillow-11.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fba162b8872d30fea8c52b258a542c5dfd7b235fb5cb352240c8d63b414013eb", size = 4430378 }, + { url = "https://files.pythonhosted.org/packages/ca/1d/ad9c14811133977ff87035bf426875b93097fb50af747793f013979facdb/pillow-11.0.0-cp313-cp313-win32.whl", hash = "sha256:f1b82c27e89fffc6da125d5eb0ca6e68017faf5efc078128cfaa42cf5cb38798", size = 2249588 }, + { url = "https://files.pythonhosted.org/packages/fb/01/3755ba287dac715e6afdb333cb1f6d69740a7475220b4637b5ce3d78cec2/pillow-11.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:8ba470552b48e5835f1d23ecb936bb7f71d206f9dfeee64245f30c3270b994de", size = 2567509 }, + { url = "https://files.pythonhosted.org/packages/c0/98/2c7d727079b6be1aba82d195767d35fcc2d32204c7a5820f822df5330152/pillow-11.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:846e193e103b41e984ac921b335df59195356ce3f71dcfd155aa79c603873b84", size = 2254791 }, + { url = "https://files.pythonhosted.org/packages/eb/38/998b04cc6f474e78b563716b20eecf42a2fa16a84589d23c8898e64b0ffd/pillow-11.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4ad70c4214f67d7466bea6a08061eba35c01b1b89eaa098040a35272a8efb22b", size = 3150854 }, + { url = "https://files.pythonhosted.org/packages/13/8e/be23a96292113c6cb26b2aa3c8b3681ec62b44ed5c2bd0b258bd59503d3c/pillow-11.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:6ec0d5af64f2e3d64a165f490d96368bb5dea8b8f9ad04487f9ab60dc4bb6003", size = 2982369 }, + { url = "https://files.pythonhosted.org/packages/97/8a/3db4eaabb7a2ae8203cd3a332a005e4aba00067fc514aaaf3e9721be31f1/pillow-11.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c809a70e43c7977c4a42aefd62f0131823ebf7dd73556fa5d5950f5b354087e2", size = 4333703 }, + { url = "https://files.pythonhosted.org/packages/28/ac/629ffc84ff67b9228fe87a97272ab125bbd4dc462745f35f192d37b822f1/pillow-11.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:4b60c9520f7207aaf2e1d94de026682fc227806c6e1f55bba7606d1c94dd623a", size = 4412550 }, + { url = "https://files.pythonhosted.org/packages/d6/07/a505921d36bb2df6868806eaf56ef58699c16c388e378b0dcdb6e5b2fb36/pillow-11.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:1e2688958a840c822279fda0086fec1fdab2f95bf2b717b66871c4ad9859d7e8", size = 4461038 }, + { url = "https://files.pythonhosted.org/packages/d6/b9/fb620dd47fc7cc9678af8f8bd8c772034ca4977237049287e99dda360b66/pillow-11.0.0-cp313-cp313t-win32.whl", hash = "sha256:607bbe123c74e272e381a8d1957083a9463401f7bd01287f50521ecb05a313f8", size = 2253197 }, + { url = "https://files.pythonhosted.org/packages/df/86/25dde85c06c89d7fc5db17940f07aae0a56ac69aa9ccb5eb0f09798862a8/pillow-11.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5c39ed17edea3bc69c743a8dd3e9853b7509625c2462532e62baa0732163a904", size = 2572169 }, + { url = "https://files.pythonhosted.org/packages/51/85/9c33f2517add612e17f3381aee7c4072779130c634921a756c97bc29fb49/pillow-11.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:75acbbeb05b86bc53cbe7b7e6fe00fbcf82ad7c684b3ad82e3d711da9ba287d3", size = 2256828 }, + { url = "https://files.pythonhosted.org/packages/36/57/42a4dd825eab762ba9e690d696d894ba366e06791936056e26e099398cda/pillow-11.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1187739620f2b365de756ce086fdb3604573337cc28a0d3ac4a01ab6b2d2a6d2", size = 3119239 }, + { url = "https://files.pythonhosted.org/packages/98/f7/25f9f9e368226a1d6cf3507081a1a7944eddd3ca7821023377043f5a83c8/pillow-11.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fbbcb7b57dc9c794843e3d1258c0fbf0f48656d46ffe9e09b63bbd6e8cd5d0a2", size = 2950803 }, + { url = "https://files.pythonhosted.org/packages/59/01/98ead48a6c2e31e6185d4c16c978a67fe3ccb5da5c2ff2ba8475379bb693/pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d203af30149ae339ad1b4f710d9844ed8796e97fda23ffbc4cc472968a47d0b", size = 3281098 }, + { url = "https://files.pythonhosted.org/packages/51/c0/570255b2866a0e4d500a14f950803a2ec273bac7badc43320120b9262450/pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21a0d3b115009ebb8ac3d2ebec5c2982cc693da935f4ab7bb5c8ebe2f47d36f2", size = 3323665 }, + { url = "https://files.pythonhosted.org/packages/0e/75/689b4ec0483c42bfc7d1aacd32ade7a226db4f4fac57c6fdcdf90c0731e3/pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:73853108f56df97baf2bb8b522f3578221e56f646ba345a372c78326710d3830", size = 3310533 }, + { url = "https://files.pythonhosted.org/packages/3d/30/38bd6149cf53da1db4bad304c543ade775d225961c4310f30425995cb9ec/pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e58876c91f97b0952eb766123bfef372792ab3f4e3e1f1a2267834c2ab131734", size = 3414886 }, + { url = "https://files.pythonhosted.org/packages/ec/3d/c32a51d848401bd94cabb8767a39621496491ee7cd5199856b77da9b18ad/pillow-11.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:224aaa38177597bb179f3ec87eeefcce8e4f85e608025e9cfac60de237ba6316", size = 2567508 }, +] + +[[package]] +name = "platformdirs" +version = "4.3.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/13/fc/128cc9cb8f03208bdbf93d3aa862e16d376844a14f9a0ce5cf4507372de4/platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907", size = 21302 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb", size = 18439 }, +] + +[[package]] +name = "pluggy" +version = "1.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/96/2d/02d4312c973c6050a18b314a5ad0b3210edb65a906f868e31c111dede4a6/pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1", size = 67955 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669", size = 20556 }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2d/4f/feb5e137aff82f7c7f3248267b97451da3644f6cdc218edfe549fb354127/prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90", size = 424684 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/6a/fd08d94654f7e67c52ca30523a178b3f8ccc4237fce4be90d39c938a831a/prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e", size = 386595 }, +] + +[[package]] +name = "protobuf" +version = "5.28.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b1/a4/4579a61de526e19005ceeb93e478b61d77aa38c8a85ad958ff16a9906549/protobuf-5.28.2.tar.gz", hash = "sha256:59379674ff119717404f7454647913787034f03fe7049cbef1d74a97bb4593f0", size = 422494 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/30/231764750e0987755b7b8d66771f161e5f002e165d27b72154c776dbabf7/protobuf-5.28.2-cp310-abi3-win32.whl", hash = "sha256:eeea10f3dc0ac7e6b4933d32db20662902b4ab81bf28df12218aa389e9c2102d", size = 419662 }, + { url = "https://files.pythonhosted.org/packages/7d/46/3fdf7462160135aee6a530f1ec66665b5b4132fa2e1002ab971bc6ec2589/protobuf-5.28.2-cp310-abi3-win_amd64.whl", hash = "sha256:2c69461a7fcc8e24be697624c09a839976d82ae75062b11a0972e41fd2cd9132", size = 431479 }, + { url = "https://files.pythonhosted.org/packages/37/45/d2a760580f8f2ed2825ba44cb370e0a4011ddef85e728f46ea3dd565a8a5/protobuf-5.28.2-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:a8b9403fc70764b08d2f593ce44f1d2920c5077bf7d311fefec999f8c40f78b7", size = 414736 }, + { url = "https://files.pythonhosted.org/packages/e6/23/ed718dc18e6a561445ece1e7a17d2dda0c634ad9cf663102b47f10005d8f/protobuf-5.28.2-cp38-abi3-manylinux2014_aarch64.whl", hash = "sha256:35cfcb15f213449af7ff6198d6eb5f739c37d7e4f1c09b5d0641babf2cc0c68f", size = 316518 }, + { url = "https://files.pythonhosted.org/packages/23/08/a1ce0415a115c2b703bfa798f06f0e43ca91dbe29d6180bf86a9287b15e2/protobuf-5.28.2-cp38-abi3-manylinux2014_x86_64.whl", hash = "sha256:5e8a95246d581eef20471b5d5ba010d55f66740942b95ba9b872d918c459452f", size = 316605 }, + { url = "https://files.pythonhosted.org/packages/9b/55/f24e3b801d2e108c48aa2b1b59bb791b5cffba89465cbbf66fc98de89270/protobuf-5.28.2-py3-none-any.whl", hash = "sha256:52235802093bd8a2811abbe8bf0ab9c5f54cca0a751fdd3f6ac2a21438bffece", size = 169566 }, +] + +[[package]] +name = "psutil" +version = "6.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/c7/8c6872f7372eb6a6b2e4708b88419fb46b857f7a2e1892966b851cc79fc9/psutil-6.0.0.tar.gz", hash = "sha256:8faae4f310b6d969fa26ca0545338b21f73c6b15db7c4a8d934a5482faa818f2", size = 508067 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0b/37/f8da2fbd29690b3557cca414c1949f92162981920699cd62095a984983bf/psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:c588a7e9b1173b6e866756dde596fd4cad94f9399daf99ad8c3258b3cb2b47a0", size = 250961 }, + { url = "https://files.pythonhosted.org/packages/35/56/72f86175e81c656a01c4401cd3b1c923f891b31fbcebe98985894176d7c9/psutil-6.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ed2440ada7ef7d0d608f20ad89a04ec47d2d3ab7190896cd62ca5fc4fe08bf0", size = 287478 }, + { url = "https://files.pythonhosted.org/packages/19/74/f59e7e0d392bc1070e9a70e2f9190d652487ac115bb16e2eff6b22ad1d24/psutil-6.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5fd9a97c8e94059b0ef54a7d4baf13b405011176c3b6ff257c247cae0d560ecd", size = 290455 }, + { url = "https://files.pythonhosted.org/packages/cd/5f/60038e277ff0a9cc8f0c9ea3d0c5eb6ee1d2470ea3f9389d776432888e47/psutil-6.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e8d0054fc88153ca0544f5c4d554d42e33df2e009c4ff42284ac9ebdef4132", size = 292046 }, + { url = "https://files.pythonhosted.org/packages/8b/20/2ff69ad9c35c3df1858ac4e094f20bd2374d33c8643cf41da8fd7cdcb78b/psutil-6.0.0-cp37-abi3-win32.whl", hash = "sha256:a495580d6bae27291324fe60cea0b5a7c23fa36a7cd35035a16d93bdcf076b9d", size = 253560 }, + { url = "https://files.pythonhosted.org/packages/73/44/561092313ae925f3acfaace6f9ddc4f6a9c748704317bad9c8c8f8a36a79/psutil-6.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:33ea5e1c975250a720b3a6609c490db40dae5d83a4eb315170c4fe0d8b1f34b3", size = 257399 }, + { url = "https://files.pythonhosted.org/packages/7c/06/63872a64c312a24fb9b4af123ee7007a306617da63ff13bcc1432386ead7/psutil-6.0.0-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:ffe7fc9b6b36beadc8c322f84e1caff51e8703b88eee1da46d1e3a6ae11b4fd0", size = 251988 }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993 }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842 }, +] + +[[package]] +name = "pycparser" +version = "2.22" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/1d/b2/31537cf4b1ca988837256c910a668b553fceb8f069bedc4b1c826024b52c/pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6", size = 172736 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/13/a3/a812df4e2dd5696d1f351d58b8fe16a405b234ad2886a0dab9183fb78109/pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc", size = 117552 }, +] + +[[package]] +name = "pyerfa" +version = "2.0.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6c/aa/a5f67966decfe415684e2505bb0b3dcaadb8c6ccc6421813b1ab34451060/pyerfa-2.0.1.4.tar.gz", hash = "sha256:acb8a6713232ea35c04bc6e40ac4e461dfcc817d395ef2a3c8051c1a33249dd3", size = 817421 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4d/29/daec96895624ec32db7a32ad3738463aac52bedb2a8b07bffcebf76c9f64/pyerfa-2.0.1.4-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ff112353944bf705342741f2fe41674f97154a302b0295eaef7381af92ad2b3a", size = 341799 }, + { url = "https://files.pythonhosted.org/packages/f9/4c/0460d2c1d82ae1c651a6e5354e64dfe4566bcb124d6d915eff039706dfd9/pyerfa-2.0.1.4-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:900b266a3862baa9560d6b1b184dcc14e0e76d550ff70d32336d3989b2ed18ca", size = 329332 }, + { url = "https://files.pythonhosted.org/packages/15/da/d588ed186140c775a3117c40e596c8ff09c80ebe4978051d9516cf0bb01b/pyerfa-2.0.1.4-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:610d2bc314e140d876b93b1287c7c81685434873c8700cc3e1596193f77d1071", size = 692783 }, + { url = "https://files.pythonhosted.org/packages/b3/1c/023031381b4cbc619eae5328d536735ec468218a2e92f45560bab9bb59a3/pyerfa-2.0.1.4-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e4508dd7ffd7b27b7f67168643764454887e990ca9e4584824f0e3ab5884c0f", size = 738706 }, + { url = "https://files.pythonhosted.org/packages/9e/b2/d4d916fd2e4cb1bc47e9698b31deed2798fdb99c0a8385871a7aac78b149/pyerfa-2.0.1.4-cp39-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:83a44ba84ebfc3244412ecbf1065c087c382da84f1c3eee1f2a0638d9046ac96", size = 749207 }, + { url = "https://files.pythonhosted.org/packages/f4/f3/9b857e3dea224d76e242bd2d4cfb686dc5d357d9f3de4f22e6958a2b52b9/pyerfa-2.0.1.4-cp39-abi3-win32.whl", hash = "sha256:46d3bed0ac666f08d8364b34a00b8c6595358d6c4f4532da8d13fac0e5227baa", size = 339975 }, + { url = "https://files.pythonhosted.org/packages/dd/cc/fdce417aa810a6abddf699948d3e1a57b85e12380222d5093d1b0756fb1f/pyerfa-2.0.1.4-cp39-abi3-win_amd64.whl", hash = "sha256:bc3cf45967ac1af77a777deb050fb08bbc75256dd97ca6005e4d385358b7af40", size = 347108 }, +] + +[[package]] +name = "pygments" +version = "2.18.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8e/62/8336eff65bcbc8e4cb5d05b55faf041285951b6e80f33e2bff2024788f31/pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199", size = 4891905 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f7/3f/01c8b82017c199075f8f788d0d906b9ffbbc5a47dc9918a945e13d5a2bda/pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a", size = 1205513 }, +] + +[[package]] +name = "pyjwt" +version = "2.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fb/68/ce067f09fca4abeca8771fe667d89cc347d1e99da3e093112ac329c6020e/pyjwt-2.9.0.tar.gz", hash = "sha256:7e1e5b56cc735432a7369cbfa0efe50fa113ebecdc04ae6922deba8b84582d0c", size = 78825 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/79/84/0fdf9b18ba31d69877bd39c9cd6052b47f3761e9910c15de788e519f079f/PyJWT-2.9.0-py3-none-any.whl", hash = "sha256:3b02fb0f44517787776cf48f2ae25d8e14f300e6d7545a4315cee571a415e850", size = 22344 }, +] + +[[package]] +name = "pymdown-extensions" +version = "10.11.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown" }, + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f4/71/2730a20e9e3752393d78998347f8b1085ef9c417646ea9befbeef221e3c4/pymdown_extensions-10.11.2.tar.gz", hash = "sha256:bc8847ecc9e784a098efd35e20cba772bc5a1b529dfcef9dc1972db9021a1049", size = 830241 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c2/35/c0edf199257ef0a7d407d29cd51c4e70d1dad4370a5f44deb65a7a5475e2/pymdown_extensions-10.11.2-py3-none-any.whl", hash = "sha256:41cdde0a77290e480cf53892f5c5e50921a7ee3e5cd60ba91bf19837b33badcf", size = 259044 }, +] + +[[package]] +name = "pyparsing" +version = "3.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8c/d5/e5aeee5387091148a19e1145f63606619cb5f20b83fccb63efae6474e7b2/pyparsing-3.2.0.tar.gz", hash = "sha256:cbf74e27246d595d9a74b186b810f6fbb86726dbf3b9532efb343f6d7294fe9c", size = 920984 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/be/ec/2eb3cd785efd67806c46c13a17339708ddc346cbb684eade7a6e6f79536a/pyparsing-3.2.0-py3-none-any.whl", hash = "sha256:93d9577b88da0bbea8cc8334ee8b918ed014968fd2ec383e868fb8afb1ccef84", size = 106921 }, +] + +[[package]] +name = "pytest" +version = "8.3.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "iniconfig" }, + { name = "packaging" }, + { name = "pluggy" }, + { name = "tomli", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8b/6c/62bbd536103af674e227c41a8f3dcd022d591f6eed5facb5a0f31ee33bbc/pytest-8.3.3.tar.gz", hash = "sha256:70b98107bd648308a7952b06e6ca9a50bc660be218d53c257cc1fc94fda10181", size = 1442487 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6b/77/7440a06a8ead44c7757a64362dd22df5760f9b12dc5f11b6188cd2fc27a0/pytest-8.3.3-py3-none-any.whl", hash = "sha256:a6853c7375b2663155079443d2e45de913a911a11d669df02a50814944db57b2", size = 342341 }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 }, +] + +[[package]] +name = "pytz" +version = "2024.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/3a/31/3c70bf7603cc2dca0f19bdc53b4537a797747a58875b552c8c413d963a3f/pytz-2024.2.tar.gz", hash = "sha256:2aa355083c50a0f93fa581709deac0c9ad65cca8a9e9beac660adcbd493c798a", size = 319692 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/c3/005fcca25ce078d2cc29fd559379817424e94885510568bc1bc53d7d5846/pytz-2024.2-py2.py3-none-any.whl", hash = "sha256:31c7c1817eb7fae7ca4b8c7ee50c72f93aa2dd863de768e1ef4245d426aa0725", size = 508002 }, +] + +[[package]] +name = "pywin32" +version = "308" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/72/a6/3e9f2c474895c1bb61b11fa9640be00067b5c5b363c501ee9c3fa53aec01/pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e", size = 5927028 }, + { url = "https://files.pythonhosted.org/packages/d9/b4/84e2463422f869b4b718f79eb7530a4c1693e96b8a4e5e968de38be4d2ba/pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e", size = 6558484 }, + { url = "https://files.pythonhosted.org/packages/9f/8f/fb84ab789713f7c6feacaa08dad3ec8105b88ade8d1c4f0f0dfcaaa017d6/pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c", size = 7971454 }, + { url = "https://files.pythonhosted.org/packages/eb/e2/02652007469263fe1466e98439831d65d4ca80ea1a2df29abecedf7e47b7/pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a", size = 5928156 }, + { url = "https://files.pythonhosted.org/packages/48/ef/f4fb45e2196bc7ffe09cad0542d9aff66b0e33f6c0954b43e49c33cad7bd/pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b", size = 6559559 }, + { url = "https://files.pythonhosted.org/packages/79/ef/68bb6aa865c5c9b11a35771329e95917b5559845bd75b65549407f9fc6b4/pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6", size = 7972495 }, + { url = "https://files.pythonhosted.org/packages/00/7c/d00d6bdd96de4344e06c4afbf218bc86b54436a94c01c71a8701f613aa56/pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897", size = 5939729 }, + { url = "https://files.pythonhosted.org/packages/21/27/0c8811fbc3ca188f93b5354e7c286eb91f80a53afa4e11007ef661afa746/pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47", size = 6543015 }, + { url = "https://files.pythonhosted.org/packages/9d/0f/d40f8373608caed2255781a3ad9a51d03a594a1248cd632d6a298daca693/pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091", size = 7976033 }, + { url = "https://files.pythonhosted.org/packages/a9/a4/aa562d8935e3df5e49c161b427a3a2efad2ed4e9cf81c3de636f1fdddfd0/pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed", size = 5938579 }, + { url = "https://files.pythonhosted.org/packages/c7/50/b0efb8bb66210da67a53ab95fd7a98826a97ee21f1d22949863e6d588b22/pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4", size = 6542056 }, + { url = "https://files.pythonhosted.org/packages/26/df/2b63e3e4f2df0224f8aaf6d131f54fe4e8c96400eb9df563e2aae2e1a1f9/pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd", size = 7974986 }, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/54/ed/79a089b6be93607fa5cdaedf301d7dfb23af5f25c398d5ead2525b063e17/pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e", size = 130631 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9b/95/a3fac87cb7158e231b5a6012e438c647e1a87f09f8e0d123acec8ab8bf71/PyYAML-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0a9a2848a5b7feac301353437eb7d5957887edbf81d56e903999a75a3d743086", size = 184199 }, + { url = "https://files.pythonhosted.org/packages/c7/7a/68bd47624dab8fd4afbfd3c48e3b79efe09098ae941de5b58abcbadff5cb/PyYAML-6.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:29717114e51c84ddfba879543fb232a6ed60086602313ca38cce623c1d62cfbf", size = 171758 }, + { url = "https://files.pythonhosted.org/packages/49/ee/14c54df452143b9ee9f0f29074d7ca5516a36edb0b4cc40c3f280131656f/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8824b5a04a04a047e72eea5cec3bc266db09e35de6bdfe34c9436ac5ee27d237", size = 718463 }, + { url = "https://files.pythonhosted.org/packages/4d/61/de363a97476e766574650d742205be468921a7b532aa2499fcd886b62530/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c36280e6fb8385e520936c3cb3b8042851904eba0e58d277dca80a5cfed590b", size = 719280 }, + { url = "https://files.pythonhosted.org/packages/6b/4e/1523cb902fd98355e2e9ea5e5eb237cbc5f3ad5f3075fa65087aa0ecb669/PyYAML-6.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec031d5d2feb36d1d1a24380e4db6d43695f3748343d99434e6f5f9156aaa2ed", size = 751239 }, + { url = "https://files.pythonhosted.org/packages/b7/33/5504b3a9a4464893c32f118a9cc045190a91637b119a9c881da1cf6b7a72/PyYAML-6.0.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:936d68689298c36b53b29f23c6dbb74de12b4ac12ca6cfe0e047bedceea56180", size = 695802 }, + { url = "https://files.pythonhosted.org/packages/5c/20/8347dcabd41ef3a3cdc4f7b7a2aff3d06598c8779faa189cdbf878b626a4/PyYAML-6.0.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:23502f431948090f597378482b4812b0caae32c22213aecf3b55325e049a6c68", size = 720527 }, + { url = "https://files.pythonhosted.org/packages/be/aa/5afe99233fb360d0ff37377145a949ae258aaab831bde4792b32650a4378/PyYAML-6.0.2-cp310-cp310-win32.whl", hash = "sha256:2e99c6826ffa974fe6e27cdb5ed0021786b03fc98e5ee3c5bfe1fd5015f42b99", size = 144052 }, + { url = "https://files.pythonhosted.org/packages/b5/84/0fa4b06f6d6c958d207620fc60005e241ecedceee58931bb20138e1e5776/PyYAML-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:a4d3091415f010369ae4ed1fc6b79def9416358877534caf6a0fdd2146c87a3e", size = 161774 }, + { url = "https://files.pythonhosted.org/packages/f8/aa/7af4e81f7acba21a4c6be026da38fd2b872ca46226673c89a758ebdc4fd2/PyYAML-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc1c1159b3d456576af7a3e4d1ba7e6924cb39de8f67111c735f6fc832082774", size = 184612 }, + { url = "https://files.pythonhosted.org/packages/8b/62/b9faa998fd185f65c1371643678e4d58254add437edb764a08c5a98fb986/PyYAML-6.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1e2120ef853f59c7419231f3bf4e7021f1b936f6ebd222406c3b60212205d2ee", size = 172040 }, + { url = "https://files.pythonhosted.org/packages/ad/0c/c804f5f922a9a6563bab712d8dcc70251e8af811fce4524d57c2c0fd49a4/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d225db5a45f21e78dd9358e58a98702a0302f2659a3c6cd320564b75b86f47c", size = 736829 }, + { url = "https://files.pythonhosted.org/packages/51/16/6af8d6a6b210c8e54f1406a6b9481febf9c64a3109c541567e35a49aa2e7/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ac9328ec4831237bec75defaf839f7d4564be1e6b25ac710bd1a96321cc8317", size = 764167 }, + { url = "https://files.pythonhosted.org/packages/75/e4/2c27590dfc9992f73aabbeb9241ae20220bd9452df27483b6e56d3975cc5/PyYAML-6.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ad2a3decf9aaba3d29c8f537ac4b243e36bef957511b4766cb0057d32b0be85", size = 762952 }, + { url = "https://files.pythonhosted.org/packages/9b/97/ecc1abf4a823f5ac61941a9c00fe501b02ac3ab0e373c3857f7d4b83e2b6/PyYAML-6.0.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ff3824dc5261f50c9b0dfb3be22b4567a6f938ccce4587b38952d85fd9e9afe4", size = 735301 }, + { url = "https://files.pythonhosted.org/packages/45/73/0f49dacd6e82c9430e46f4a027baa4ca205e8b0a9dce1397f44edc23559d/PyYAML-6.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:797b4f722ffa07cc8d62053e4cff1486fa6dc094105d13fea7b1de7d8bf71c9e", size = 756638 }, + { url = "https://files.pythonhosted.org/packages/22/5f/956f0f9fc65223a58fbc14459bf34b4cc48dec52e00535c79b8db361aabd/PyYAML-6.0.2-cp311-cp311-win32.whl", hash = "sha256:11d8f3dd2b9c1207dcaf2ee0bbbfd5991f571186ec9cc78427ba5bd32afae4b5", size = 143850 }, + { url = "https://files.pythonhosted.org/packages/ed/23/8da0bbe2ab9dcdd11f4f4557ccaf95c10b9811b13ecced089d43ce59c3c8/PyYAML-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10ce637b18caea04431ce14fabcf5c64a1c61ec9c56b071a4b7ca131ca52d44", size = 161980 }, + { url = "https://files.pythonhosted.org/packages/86/0c/c581167fc46d6d6d7ddcfb8c843a4de25bdd27e4466938109ca68492292c/PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab", size = 183873 }, + { url = "https://files.pythonhosted.org/packages/a8/0c/38374f5bb272c051e2a69281d71cba6fdb983413e6758b84482905e29a5d/PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725", size = 173302 }, + { url = "https://files.pythonhosted.org/packages/c3/93/9916574aa8c00aa06bbac729972eb1071d002b8e158bd0e83a3b9a20a1f7/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5", size = 739154 }, + { url = "https://files.pythonhosted.org/packages/95/0f/b8938f1cbd09739c6da569d172531567dbcc9789e0029aa070856f123984/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425", size = 766223 }, + { url = "https://files.pythonhosted.org/packages/b9/2b/614b4752f2e127db5cc206abc23a8c19678e92b23c3db30fc86ab731d3bd/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476", size = 767542 }, + { url = "https://files.pythonhosted.org/packages/d4/00/dd137d5bcc7efea1836d6264f049359861cf548469d18da90cd8216cf05f/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48", size = 731164 }, + { url = "https://files.pythonhosted.org/packages/c9/1f/4f998c900485e5c0ef43838363ba4a9723ac0ad73a9dc42068b12aaba4e4/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b", size = 756611 }, + { url = "https://files.pythonhosted.org/packages/df/d1/f5a275fdb252768b7a11ec63585bc38d0e87c9e05668a139fea92b80634c/PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4", size = 140591 }, + { url = "https://files.pythonhosted.org/packages/0c/e8/4f648c598b17c3d06e8753d7d13d57542b30d56e6c2dedf9c331ae56312e/PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8", size = 156338 }, + { url = "https://files.pythonhosted.org/packages/ef/e3/3af305b830494fa85d95f6d95ef7fa73f2ee1cc8ef5b495c7c3269fb835f/PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba", size = 181309 }, + { url = "https://files.pythonhosted.org/packages/45/9f/3b1c20a0b7a3200524eb0076cc027a970d320bd3a6592873c85c92a08731/PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1", size = 171679 }, + { url = "https://files.pythonhosted.org/packages/7c/9a/337322f27005c33bcb656c655fa78325b730324c78620e8328ae28b64d0c/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133", size = 733428 }, + { url = "https://files.pythonhosted.org/packages/a3/69/864fbe19e6c18ea3cc196cbe5d392175b4cf3d5d0ac1403ec3f2d237ebb5/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484", size = 763361 }, + { url = "https://files.pythonhosted.org/packages/04/24/b7721e4845c2f162d26f50521b825fb061bc0a5afcf9a386840f23ea19fa/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5", size = 759523 }, + { url = "https://files.pythonhosted.org/packages/2b/b2/e3234f59ba06559c6ff63c4e10baea10e5e7df868092bf9ab40e5b9c56b6/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc", size = 726660 }, + { url = "https://files.pythonhosted.org/packages/fe/0f/25911a9f080464c59fab9027482f822b86bf0608957a5fcc6eaac85aa515/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652", size = 751597 }, + { url = "https://files.pythonhosted.org/packages/14/0d/e2c3b43bbce3cf6bd97c840b46088a3031085179e596d4929729d8d68270/PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183", size = 140527 }, + { url = "https://files.pythonhosted.org/packages/fa/de/02b54f42487e3d3c6efb3f89428677074ca7bf43aae402517bc7cca949f3/PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563", size = 156446 }, +] + +[[package]] +name = "pyyaml-env-tag" +version = "0.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pyyaml" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fb/8e/da1c6c58f751b70f8ceb1eb25bc25d524e8f14fe16edcce3f4e3ba08629c/pyyaml_env_tag-0.1.tar.gz", hash = "sha256:70092675bda14fdec33b31ba77e7543de9ddc88f2e5b99160396572d11525bdb", size = 5631 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/66/bbb1dd374f5c870f59c5bb1db0e18cbe7fa739415a24cbd95b2d1f5ae0c4/pyyaml_env_tag-0.1-py3-none-any.whl", hash = "sha256:af31106dec8a4d68c60207c1886031cbf839b68aa7abccdb19868200532c2069", size = 3911 }, +] + +[[package]] +name = "pyzmq" +version = "26.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fd/05/bed626b9f7bb2322cdbbf7b4bd8f54b1b617b0d2ab2d3547d6e39428a48e/pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f", size = 271975 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1f/a8/9837c39aba390eb7d01924ace49d761c8dbe7bc2d6082346d00c8332e431/pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629", size = 1340058 }, + { url = "https://files.pythonhosted.org/packages/a2/1f/a006f2e8e4f7d41d464272012695da17fb95f33b54342612a6890da96ff6/pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b", size = 1008818 }, + { url = "https://files.pythonhosted.org/packages/b6/09/b51b6683fde5ca04593a57bbe81788b6b43114d8f8ee4e80afc991e14760/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764", size = 673199 }, + { url = "https://files.pythonhosted.org/packages/c9/78/486f3e2e824f3a645238332bf5a4c4b4477c3063033a27c1e4052358dee2/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c", size = 911762 }, + { url = "https://files.pythonhosted.org/packages/5e/3b/2eb1667c9b866f53e76ee8b0c301b0469745a23bd5a87b7ee3d5dd9eb6e5/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a", size = 868773 }, + { url = "https://files.pythonhosted.org/packages/16/29/ca99b4598a9dc7e468b5417eda91f372b595be1e3eec9b7cbe8e5d3584e8/pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88", size = 868834 }, + { url = "https://files.pythonhosted.org/packages/ad/e5/9efaeb1d2f4f8c50da04144f639b042bc52869d3a206d6bf672ab3522163/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f", size = 1202861 }, + { url = "https://files.pythonhosted.org/packages/c3/62/c721b5608a8ac0a69bb83cbb7d07a56f3ff00b3991a138e44198a16f94c7/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282", size = 1515304 }, + { url = "https://files.pythonhosted.org/packages/87/84/e8bd321aa99b72f48d4606fc5a0a920154125bd0a4608c67eab742dab087/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea", size = 1414712 }, + { url = "https://files.pythonhosted.org/packages/cd/cd/420e3fd1ac6977b008b72e7ad2dae6350cc84d4c5027fc390b024e61738f/pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2", size = 578113 }, + { url = "https://files.pythonhosted.org/packages/5c/57/73930d56ed45ae0cb4946f383f985c855c9b3d4063f26416998f07523c0e/pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971", size = 641631 }, + { url = "https://files.pythonhosted.org/packages/61/d2/ae6ac5c397f1ccad59031c64beaafce7a0d6182e0452cc48f1c9c87d2dd0/pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa", size = 543528 }, + { url = "https://files.pythonhosted.org/packages/12/20/de7442172f77f7c96299a0ac70e7d4fb78cd51eca67aa2cf552b66c14196/pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218", size = 1340639 }, + { url = "https://files.pythonhosted.org/packages/98/4d/5000468bd64c7910190ed0a6c76a1ca59a68189ec1f007c451dc181a22f4/pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4", size = 1008710 }, + { url = "https://files.pythonhosted.org/packages/e1/bf/c67fd638c2f9fbbab8090a3ee779370b97c82b84cc12d0c498b285d7b2c0/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef", size = 673129 }, + { url = "https://files.pythonhosted.org/packages/86/94/99085a3f492aa538161cbf27246e8886ff850e113e0c294a5b8245f13b52/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317", size = 910107 }, + { url = "https://files.pythonhosted.org/packages/31/1d/346809e8a9b999646d03f21096428453465b1bca5cd5c64ecd048d9ecb01/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf", size = 867960 }, + { url = "https://files.pythonhosted.org/packages/ab/68/6fb6ae5551846ad5beca295b7bca32bf0a7ce19f135cb30e55fa2314e6b6/pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e", size = 869204 }, + { url = "https://files.pythonhosted.org/packages/0f/f9/18417771dee223ccf0f48e29adf8b4e25ba6d0e8285e33bcbce078070bc3/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37", size = 1203351 }, + { url = "https://files.pythonhosted.org/packages/e0/46/f13e67fe0d4f8a2315782cbad50493de6203ea0d744610faf4d5f5b16e90/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3", size = 1514204 }, + { url = "https://files.pythonhosted.org/packages/50/11/ddcf7343b7b7a226e0fc7b68cbf5a5bb56291fac07f5c3023bb4c319ebb4/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6", size = 1414339 }, + { url = "https://files.pythonhosted.org/packages/01/14/1c18d7d5b7be2708f513f37c61bfadfa62161c10624f8733f1c8451b3509/pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4", size = 576928 }, + { url = "https://files.pythonhosted.org/packages/3b/1b/0a540edd75a41df14ec416a9a500b9fec66e554aac920d4c58fbd5756776/pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5", size = 642317 }, + { url = "https://files.pythonhosted.org/packages/98/77/1cbfec0358078a4c5add529d8a70892db1be900980cdb5dd0898b3d6ab9d/pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003", size = 543834 }, + { url = "https://files.pythonhosted.org/packages/28/2f/78a766c8913ad62b28581777ac4ede50c6d9f249d39c2963e279524a1bbe/pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9", size = 1343105 }, + { url = "https://files.pythonhosted.org/packages/b7/9c/4b1e2d3d4065be715e007fe063ec7885978fad285f87eae1436e6c3201f4/pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52", size = 1008365 }, + { url = "https://files.pythonhosted.org/packages/4f/ef/5a23ec689ff36d7625b38d121ef15abfc3631a9aecb417baf7a4245e4124/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08", size = 665923 }, + { url = "https://files.pythonhosted.org/packages/ae/61/d436461a47437d63c6302c90724cf0981883ec57ceb6073873f32172d676/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5", size = 903400 }, + { url = "https://files.pythonhosted.org/packages/47/42/fc6d35ecefe1739a819afaf6f8e686f7f02a4dd241c78972d316f403474c/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae", size = 860034 }, + { url = "https://files.pythonhosted.org/packages/07/3b/44ea6266a6761e9eefaa37d98fabefa112328808ac41aa87b4bbb668af30/pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711", size = 860579 }, + { url = "https://files.pythonhosted.org/packages/38/6f/4df2014ab553a6052b0e551b37da55166991510f9e1002c89cab7ce3b3f2/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6", size = 1196246 }, + { url = "https://files.pythonhosted.org/packages/38/9d/ee240fc0c9fe9817f0c9127a43238a3e28048795483c403cc10720ddef22/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3", size = 1507441 }, + { url = "https://files.pythonhosted.org/packages/85/4f/01711edaa58d535eac4a26c294c617c9a01f09857c0ce191fd574d06f359/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b", size = 1406498 }, + { url = "https://files.pythonhosted.org/packages/07/18/907134c85c7152f679ed744e73e645b365f3ad571f38bdb62e36f347699a/pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7", size = 575533 }, + { url = "https://files.pythonhosted.org/packages/ce/2c/a6f4a20202a4d3c582ad93f95ee78d79bbdc26803495aec2912b17dbbb6c/pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a", size = 637768 }, + { url = "https://files.pythonhosted.org/packages/5f/0e/eb16ff731632d30554bf5af4dbba3ffcd04518219d82028aea4ae1b02ca5/pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b", size = 540675 }, + { url = "https://files.pythonhosted.org/packages/04/a7/0f7e2f6c126fe6e62dbae0bc93b1bd3f1099cf7fea47a5468defebe3f39d/pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726", size = 1006564 }, + { url = "https://files.pythonhosted.org/packages/31/b6/a187165c852c5d49f826a690857684333a6a4a065af0a6015572d2284f6a/pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3", size = 1340447 }, + { url = "https://files.pythonhosted.org/packages/68/ba/f4280c58ff71f321602a6e24fd19879b7e79793fb8ab14027027c0fb58ef/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50", size = 665485 }, + { url = "https://files.pythonhosted.org/packages/77/b5/c987a5c53c7d8704216f29fc3d810b32f156bcea488a940e330e1bcbb88d/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb", size = 903484 }, + { url = "https://files.pythonhosted.org/packages/29/c9/07da157d2db18c72a7eccef8e684cefc155b712a88e3d479d930aa9eceba/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187", size = 859981 }, + { url = "https://files.pythonhosted.org/packages/43/09/e12501bd0b8394b7d02c41efd35c537a1988da67fc9c745cae9c6c776d31/pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b", size = 860334 }, + { url = "https://files.pythonhosted.org/packages/eb/ff/f5ec1d455f8f7385cc0a8b2acd8c807d7fade875c14c44b85c1bddabae21/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18", size = 1196179 }, + { url = "https://files.pythonhosted.org/packages/ec/8a/bb2ac43295b1950fe436a81fc5b298be0b96ac76fb029b514d3ed58f7b27/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115", size = 1507668 }, + { url = "https://files.pythonhosted.org/packages/a9/49/dbc284ebcfd2dca23f6349227ff1616a7ee2c4a35fe0a5d6c3deff2b4fed/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e", size = 1406539 }, + { url = "https://files.pythonhosted.org/packages/00/68/093cdce3fe31e30a341d8e52a1ad86392e13c57970d722c1f62a1d1a54b6/pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5", size = 575567 }, + { url = "https://files.pythonhosted.org/packages/92/ae/6cc4657148143412b5819b05e362ae7dd09fb9fe76e2a539dcff3d0386bc/pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad", size = 637551 }, + { url = "https://files.pythonhosted.org/packages/6c/67/fbff102e201688f97c8092e4c3445d1c1068c2f27bbd45a578df97ed5f94/pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797", size = 540378 }, + { url = "https://files.pythonhosted.org/packages/3f/fe/2d998380b6e0122c6c4bdf9b6caf490831e5f5e2d08a203b5adff060c226/pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a", size = 1007378 }, + { url = "https://files.pythonhosted.org/packages/4a/f4/30d6e7157f12b3a0390bde94d6a8567cdb88846ed068a6e17238a4ccf600/pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc", size = 1329532 }, + { url = "https://files.pythonhosted.org/packages/82/86/3fe917870e15ee1c3ad48229a2a64458e36036e64b4afa9659045d82bfa8/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5", size = 653242 }, + { url = "https://files.pythonhosted.org/packages/50/2d/242e7e6ef6c8c19e6cb52d095834508cd581ffb925699fd3c640cdc758f1/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672", size = 888404 }, + { url = "https://files.pythonhosted.org/packages/ac/11/7270566e1f31e4ea73c81ec821a4b1688fd551009a3d2bab11ec66cb1e8f/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797", size = 845858 }, + { url = "https://files.pythonhosted.org/packages/91/d5/72b38fbc69867795c8711bdd735312f9fef1e3d9204e2f63ab57085434b9/pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386", size = 847375 }, + { url = "https://files.pythonhosted.org/packages/dd/9a/10ed3c7f72b4c24e719c59359fbadd1a27556a28b36cdf1cd9e4fb7845d5/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306", size = 1183489 }, + { url = "https://files.pythonhosted.org/packages/72/2d/8660892543fabf1fe41861efa222455811adac9f3c0818d6c3170a1153e3/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6", size = 1492932 }, + { url = "https://files.pythonhosted.org/packages/7b/d6/32fd69744afb53995619bc5effa2a405ae0d343cd3e747d0fbc43fe894ee/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0", size = 1392485 }, + { url = "https://files.pythonhosted.org/packages/53/fb/36b2b2548286e9444e52fcd198760af99fd89102b5be50f0660fcfe902df/pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072", size = 906955 }, + { url = "https://files.pythonhosted.org/packages/77/8f/6ce54f8979a01656e894946db6299e2273fcee21c8e5fa57c6295ef11f57/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1", size = 565701 }, + { url = "https://files.pythonhosted.org/packages/ee/1c/bf8cd66730a866b16db8483286078892b7f6536f8c389fb46e4beba0a970/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d", size = 794312 }, + { url = "https://files.pythonhosted.org/packages/71/43/91fa4ff25bbfdc914ab6bafa0f03241d69370ef31a761d16bb859f346582/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca", size = 752775 }, + { url = "https://files.pythonhosted.org/packages/ec/d2/3b2ab40f455a256cb6672186bea95cd97b459ce4594050132d71e76f0d6f/pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c", size = 550762 }, +] + +[[package]] +name = "referencing" +version = "0.35.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/73ca1f8e72fff6fa52119dbd185f73a907b1989428917b24cff660129b6d/referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c", size = 62991 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/59/2056f61236782a2c86b33906c025d4f4a0b17be0161b63b70fd9e8775d36/referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de", size = 26684 }, +] + +[[package]] +name = "regex" +version = "2024.9.11" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f9/38/148df33b4dbca3bd069b963acab5e0fa1a9dbd6820f8c322d0dd6faeff96/regex-2024.9.11.tar.gz", hash = "sha256:6c188c307e8433bcb63dc1915022deb553b4203a70722fc542c363bf120a01fd", size = 399403 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/63/12/497bd6599ce8a239ade68678132296aec5ee25ebea45fc8ba91aa60fceec/regex-2024.9.11-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:1494fa8725c285a81d01dc8c06b55287a1ee5e0e382d8413adc0a9197aac6408", size = 482488 }, + { url = "https://files.pythonhosted.org/packages/c1/24/595ddb9bec2a9b151cdaf9565b0c9f3da9f0cb1dca6c158bc5175332ddf8/regex-2024.9.11-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0e12c481ad92d129c78f13a2a3662317e46ee7ef96c94fd332e1c29131875b7d", size = 287443 }, + { url = "https://files.pythonhosted.org/packages/69/a8/b2fb45d9715b1469383a0da7968f8cacc2f83e9fbbcd6b8713752dd980a6/regex-2024.9.11-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:16e13a7929791ac1216afde26f712802e3df7bf0360b32e4914dca3ab8baeea5", size = 284561 }, + { url = "https://files.pythonhosted.org/packages/88/87/1ce4a5357216b19b7055e7d3b0efc75a6e426133bf1e7d094321df514257/regex-2024.9.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:46989629904bad940bbec2106528140a218b4a36bb3042d8406980be1941429c", size = 783177 }, + { url = "https://files.pythonhosted.org/packages/3c/65/b9f002ab32f7b68e7d1dcabb67926f3f47325b8dbc22cc50b6a043e1d07c/regex-2024.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a906ed5e47a0ce5f04b2c981af1c9acf9e8696066900bf03b9d7879a6f679fc8", size = 823193 }, + { url = "https://files.pythonhosted.org/packages/22/91/8339dd3abce101204d246e31bc26cdd7ec07c9f91598472459a3a902aa41/regex-2024.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e9a091b0550b3b0207784a7d6d0f1a00d1d1c8a11699c1a4d93db3fbefc3ad35", size = 809950 }, + { url = "https://files.pythonhosted.org/packages/cb/19/556638aa11c2ec9968a1da998f07f27ec0abb9bf3c647d7c7985ca0b8eea/regex-2024.9.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ddcd9a179c0a6fa8add279a4444015acddcd7f232a49071ae57fa6e278f1f71", size = 782661 }, + { url = "https://files.pythonhosted.org/packages/d1/e9/7a5bc4c6ef8d9cd2bdd83a667888fc35320da96a4cc4da5fa084330f53db/regex-2024.9.11-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6b41e1adc61fa347662b09398e31ad446afadff932a24807d3ceb955ed865cc8", size = 772348 }, + { url = "https://files.pythonhosted.org/packages/f1/0b/29f2105bfac3ed08e704914c38e93b07c784a6655f8a015297ee7173e95b/regex-2024.9.11-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ced479f601cd2f8ca1fd7b23925a7e0ad512a56d6e9476f79b8f381d9d37090a", size = 697460 }, + { url = "https://files.pythonhosted.org/packages/71/3a/52ff61054d15a4722605f5872ad03962b319a04c1ebaebe570b8b9b7dde1/regex-2024.9.11-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:635a1d96665f84b292e401c3d62775851aedc31d4f8784117b3c68c4fcd4118d", size = 769151 }, + { url = "https://files.pythonhosted.org/packages/97/07/37e460ab5ca84be8e1e197c3b526c5c86993dcc9e13cbc805c35fc2463c1/regex-2024.9.11-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:c0256beda696edcf7d97ef16b2a33a8e5a875affd6fa6567b54f7c577b30a137", size = 777478 }, + { url = "https://files.pythonhosted.org/packages/65/7b/953075723dd5ab00780043ac2f9de667306ff9e2a85332975e9f19279174/regex-2024.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:3ce4f1185db3fbde8ed8aa223fc9620f276c58de8b0d4f8cc86fd1360829edb6", size = 845373 }, + { url = "https://files.pythonhosted.org/packages/40/b8/3e9484c6230b8b6e8f816ab7c9a080e631124991a4ae2c27a81631777db0/regex-2024.9.11-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:09d77559e80dcc9d24570da3745ab859a9cf91953062e4ab126ba9d5993688ca", size = 845369 }, + { url = "https://files.pythonhosted.org/packages/b7/99/38434984d912edbd2e1969d116257e869578f67461bd7462b894c45ed874/regex-2024.9.11-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7a22ccefd4db3f12b526eccb129390942fe874a3a9fdbdd24cf55773a1faab1a", size = 773935 }, + { url = "https://files.pythonhosted.org/packages/ab/67/43174d2b46fa947b7b9dfe56b6c8a8a76d44223f35b1d64645a732fd1d6f/regex-2024.9.11-cp310-cp310-win32.whl", hash = "sha256:f745ec09bc1b0bd15cfc73df6fa4f726dcc26bb16c23a03f9e3367d357eeedd0", size = 261624 }, + { url = "https://files.pythonhosted.org/packages/c4/2a/4f9c47d9395b6aff24874c761d8d620c0232f97c43ef3cf668c8b355e7a7/regex-2024.9.11-cp310-cp310-win_amd64.whl", hash = "sha256:01c2acb51f8a7d6494c8c5eafe3d8e06d76563d8a8a4643b37e9b2dd8a2ff623", size = 274020 }, + { url = "https://files.pythonhosted.org/packages/86/a1/d526b7b6095a0019aa360948c143aacfeb029919c898701ce7763bbe4c15/regex-2024.9.11-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:2cce2449e5927a0bf084d346da6cd5eb016b2beca10d0013ab50e3c226ffc0df", size = 482483 }, + { url = "https://files.pythonhosted.org/packages/32/d9/bfdd153179867c275719e381e1e8e84a97bd186740456a0dcb3e7125c205/regex-2024.9.11-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b37fa423beefa44919e009745ccbf353d8c981516e807995b2bd11c2c77d268", size = 287442 }, + { url = "https://files.pythonhosted.org/packages/33/c4/60f3370735135e3a8d673ddcdb2507a8560d0e759e1398d366e43d000253/regex-2024.9.11-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:64ce2799bd75039b480cc0360907c4fb2f50022f030bf9e7a8705b636e408fad", size = 284561 }, + { url = "https://files.pythonhosted.org/packages/b1/51/91a5ebdff17f9ec4973cb0aa9d37635efec1c6868654bbc25d1543aca4ec/regex-2024.9.11-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4cc92bb6db56ab0c1cbd17294e14f5e9224f0cc6521167ef388332604e92679", size = 791779 }, + { url = "https://files.pythonhosted.org/packages/07/4a/022c5e6f0891a90cd7eb3d664d6c58ce2aba48bff107b00013f3d6167069/regex-2024.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d05ac6fa06959c4172eccd99a222e1fbf17b5670c4d596cb1e5cde99600674c4", size = 832605 }, + { url = "https://files.pythonhosted.org/packages/ac/1c/3793990c8c83ca04e018151ddda83b83ecc41d89964f0f17749f027fc44d/regex-2024.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:040562757795eeea356394a7fb13076ad4f99d3c62ab0f8bdfb21f99a1f85664", size = 818556 }, + { url = "https://files.pythonhosted.org/packages/e9/5c/8b385afbfacb853730682c57be56225f9fe275c5bf02ac1fc88edbff316d/regex-2024.9.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6113c008a7780792efc80f9dfe10ba0cd043cbf8dc9a76ef757850f51b4edc50", size = 792808 }, + { url = "https://files.pythonhosted.org/packages/9b/8b/a4723a838b53c771e9240951adde6af58c829fb6a6a28f554e8131f53839/regex-2024.9.11-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8e5fb5f77c8745a60105403a774fe2c1759b71d3e7b4ca237a5e67ad066c7199", size = 781115 }, + { url = "https://files.pythonhosted.org/packages/83/5f/031a04b6017033d65b261259c09043c06f4ef2d4eac841d0649d76d69541/regex-2024.9.11-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:54d9ff35d4515debf14bc27f1e3b38bfc453eff3220f5bce159642fa762fe5d4", size = 778155 }, + { url = "https://files.pythonhosted.org/packages/fd/cd/4660756070b03ce4a66663a43f6c6e7ebc2266cc6b4c586c167917185eb4/regex-2024.9.11-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:df5cbb1fbc74a8305b6065d4ade43b993be03dbe0f8b30032cced0d7740994bd", size = 784614 }, + { url = "https://files.pythonhosted.org/packages/93/8d/65b9bea7df120a7be8337c415b6d256ba786cbc9107cebba3bf8ff09da99/regex-2024.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:7fb89ee5d106e4a7a51bce305ac4efb981536301895f7bdcf93ec92ae0d91c7f", size = 853744 }, + { url = "https://files.pythonhosted.org/packages/96/a7/fba1eae75eb53a704475baf11bd44b3e6ccb95b316955027eb7748f24ef8/regex-2024.9.11-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:a738b937d512b30bf75995c0159c0ddf9eec0775c9d72ac0202076c72f24aa96", size = 855890 }, + { url = "https://files.pythonhosted.org/packages/45/14/d864b2db80a1a3358534392373e8a281d95b28c29c87d8548aed58813910/regex-2024.9.11-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e28f9faeb14b6f23ac55bfbbfd3643f5c7c18ede093977f1df249f73fd22c7b1", size = 781887 }, + { url = "https://files.pythonhosted.org/packages/4d/a9/bfb29b3de3eb11dc9b412603437023b8e6c02fb4e11311863d9bf62c403a/regex-2024.9.11-cp311-cp311-win32.whl", hash = "sha256:18e707ce6c92d7282dfce370cd205098384b8ee21544e7cb29b8aab955b66fa9", size = 261644 }, + { url = "https://files.pythonhosted.org/packages/c7/ab/1ad2511cf6a208fde57fafe49829cab8ca018128ab0d0b48973d8218634a/regex-2024.9.11-cp311-cp311-win_amd64.whl", hash = "sha256:313ea15e5ff2a8cbbad96ccef6be638393041b0a7863183c2d31e0c6116688cf", size = 274033 }, + { url = "https://files.pythonhosted.org/packages/6e/92/407531450762bed778eedbde04407f68cbd75d13cee96c6f8d6903d9c6c1/regex-2024.9.11-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b0d0a6c64fcc4ef9c69bd5b3b3626cc3776520a1637d8abaa62b9edc147a58f7", size = 483590 }, + { url = "https://files.pythonhosted.org/packages/8e/a2/048acbc5ae1f615adc6cba36cc45734e679b5f1e4e58c3c77f0ed611d4e2/regex-2024.9.11-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:49b0e06786ea663f933f3710a51e9385ce0cba0ea56b67107fd841a55d56a231", size = 288175 }, + { url = "https://files.pythonhosted.org/packages/8a/ea/909d8620329ab710dfaf7b4adee41242ab7c9b95ea8d838e9bfe76244259/regex-2024.9.11-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5b513b6997a0b2f10e4fd3a1313568e373926e8c252bd76c960f96fd039cd28d", size = 284749 }, + { url = "https://files.pythonhosted.org/packages/ca/fa/521eb683b916389b4975337873e66954e0f6d8f91bd5774164a57b503185/regex-2024.9.11-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee439691d8c23e76f9802c42a95cfeebf9d47cf4ffd06f18489122dbb0a7ad64", size = 795181 }, + { url = "https://files.pythonhosted.org/packages/28/db/63047feddc3280cc242f9c74f7aeddc6ee662b1835f00046f57d5630c827/regex-2024.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a8f877c89719d759e52783f7fe6e1c67121076b87b40542966c02de5503ace42", size = 835842 }, + { url = "https://files.pythonhosted.org/packages/e3/94/86adc259ff8ec26edf35fcca7e334566c1805c7493b192cb09679f9c3dee/regex-2024.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:23b30c62d0f16827f2ae9f2bb87619bc4fba2044911e2e6c2eb1af0161cdb766", size = 823533 }, + { url = "https://files.pythonhosted.org/packages/29/52/84662b6636061277cb857f658518aa7db6672bc6d1a3f503ccd5aefc581e/regex-2024.9.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ab7824093d8f10d44330fe1e6493f756f252d145323dd17ab6b48733ff6c0a", size = 797037 }, + { url = "https://files.pythonhosted.org/packages/c3/2a/cd4675dd987e4a7505f0364a958bc41f3b84942de9efaad0ef9a2646681c/regex-2024.9.11-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8dee5b4810a89447151999428fe096977346cf2f29f4d5e29609d2e19e0199c9", size = 784106 }, + { url = "https://files.pythonhosted.org/packages/6f/75/3ea7ec29de0bbf42f21f812f48781d41e627d57a634f3f23947c9a46e303/regex-2024.9.11-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:98eeee2f2e63edae2181c886d7911ce502e1292794f4c5ee71e60e23e8d26b5d", size = 782468 }, + { url = "https://files.pythonhosted.org/packages/d3/67/15519d69b52c252b270e679cb578e22e0c02b8dd4e361f2b04efcc7f2335/regex-2024.9.11-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:57fdd2e0b2694ce6fc2e5ccf189789c3e2962916fb38779d3e3521ff8fe7a822", size = 790324 }, + { url = "https://files.pythonhosted.org/packages/9c/71/eff77d3fe7ba08ab0672920059ec30d63fa7e41aa0fb61c562726e9bd721/regex-2024.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:d552c78411f60b1fdaafd117a1fca2f02e562e309223b9d44b7de8be451ec5e0", size = 860214 }, + { url = "https://files.pythonhosted.org/packages/81/11/e1bdf84a72372e56f1ea4b833dd583b822a23138a616ace7ab57a0e11556/regex-2024.9.11-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:a0b2b80321c2ed3fcf0385ec9e51a12253c50f146fddb2abbb10f033fe3d049a", size = 859420 }, + { url = "https://files.pythonhosted.org/packages/ea/75/9753e9dcebfa7c3645563ef5c8a58f3a47e799c872165f37c55737dadd3e/regex-2024.9.11-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:18406efb2f5a0e57e3a5881cd9354c1512d3bb4f5c45d96d110a66114d84d23a", size = 787333 }, + { url = "https://files.pythonhosted.org/packages/bc/4e/ba1cbca93141f7416624b3ae63573e785d4bc1834c8be44a8f0747919eca/regex-2024.9.11-cp312-cp312-win32.whl", hash = "sha256:e464b467f1588e2c42d26814231edecbcfe77f5ac414d92cbf4e7b55b2c2a776", size = 262058 }, + { url = "https://files.pythonhosted.org/packages/6e/16/efc5f194778bf43e5888209e5cec4b258005d37c613b67ae137df3b89c53/regex-2024.9.11-cp312-cp312-win_amd64.whl", hash = "sha256:9e8719792ca63c6b8340380352c24dcb8cd7ec49dae36e963742a275dfae6009", size = 273526 }, + { url = "https://files.pythonhosted.org/packages/93/0a/d1c6b9af1ff1e36832fe38d74d5c5bab913f2bdcbbd6bc0e7f3ce8b2f577/regex-2024.9.11-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:c157bb447303070f256e084668b702073db99bbb61d44f85d811025fcf38f784", size = 483376 }, + { url = "https://files.pythonhosted.org/packages/a4/42/5910a050c105d7f750a72dcb49c30220c3ae4e2654e54aaaa0e9bc0584cb/regex-2024.9.11-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:4db21ece84dfeefc5d8a3863f101995de646c6cb0536952c321a2650aa202c36", size = 288112 }, + { url = "https://files.pythonhosted.org/packages/8d/56/0c262aff0e9224fa7ffce47b5458d373f4d3e3ff84e99b5ff0cb15e0b5b2/regex-2024.9.11-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:220e92a30b426daf23bb67a7962900ed4613589bab80382be09b48896d211e92", size = 284608 }, + { url = "https://files.pythonhosted.org/packages/b9/54/9fe8f9aec5007bbbbce28ba3d2e3eaca425f95387b7d1e84f0d137d25237/regex-2024.9.11-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eb1ae19e64c14c7ec1995f40bd932448713d3c73509e82d8cd7744dc00e29e86", size = 795337 }, + { url = "https://files.pythonhosted.org/packages/b2/e7/6b2f642c3cded271c4f16cc4daa7231be544d30fe2b168e0223724b49a61/regex-2024.9.11-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f47cd43a5bfa48f86925fe26fbdd0a488ff15b62468abb5d2a1e092a4fb10e85", size = 835848 }, + { url = "https://files.pythonhosted.org/packages/cd/9e/187363bdf5d8c0e4662117b92aa32bf52f8f09620ae93abc7537d96d3311/regex-2024.9.11-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9d4a76b96f398697fe01117093613166e6aa8195d63f1b4ec3f21ab637632963", size = 823503 }, + { url = "https://files.pythonhosted.org/packages/f8/10/601303b8ee93589f879664b0cfd3127949ff32b17f9b6c490fb201106c4d/regex-2024.9.11-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ea51dcc0835eea2ea31d66456210a4e01a076d820e9039b04ae8d17ac11dee6", size = 797049 }, + { url = "https://files.pythonhosted.org/packages/ef/1c/ea200f61ce9f341763f2717ab4daebe4422d83e9fd4ac5e33435fd3a148d/regex-2024.9.11-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b7aaa315101c6567a9a45d2839322c51c8d6e81f67683d529512f5bcfb99c802", size = 784144 }, + { url = "https://files.pythonhosted.org/packages/d8/5c/d2429be49ef3292def7688401d3deb11702c13dcaecdc71d2b407421275b/regex-2024.9.11-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c57d08ad67aba97af57a7263c2d9006d5c404d721c5f7542f077f109ec2a4a29", size = 782483 }, + { url = "https://files.pythonhosted.org/packages/12/d9/cbc30f2ff7164f3b26a7760f87c54bf8b2faed286f60efd80350a51c5b99/regex-2024.9.11-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:f8404bf61298bb6f8224bb9176c1424548ee1181130818fcd2cbffddc768bed8", size = 790320 }, + { url = "https://files.pythonhosted.org/packages/19/1d/43ed03a236313639da5a45e61bc553c8d41e925bcf29b0f8ecff0c2c3f25/regex-2024.9.11-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:dd4490a33eb909ef5078ab20f5f000087afa2a4daa27b4c072ccb3cb3050ad84", size = 860435 }, + { url = "https://files.pythonhosted.org/packages/34/4f/5d04da61c7c56e785058a46349f7285ae3ebc0726c6ea7c5c70600a52233/regex-2024.9.11-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:eee9130eaad130649fd73e5cd92f60e55708952260ede70da64de420cdcad554", size = 859571 }, + { url = "https://files.pythonhosted.org/packages/12/7f/8398c8155a3c70703a8e91c29532558186558e1aea44144b382faa2a6f7a/regex-2024.9.11-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6a2644a93da36c784e546de579ec1806bfd2763ef47babc1b03d765fe560c9f8", size = 787398 }, + { url = "https://files.pythonhosted.org/packages/58/3a/f5903977647a9a7e46d5535e9e96c194304aeeca7501240509bde2f9e17f/regex-2024.9.11-cp313-cp313-win32.whl", hash = "sha256:e997fd30430c57138adc06bba4c7c2968fb13d101e57dd5bb9355bf8ce3fa7e8", size = 262035 }, + { url = "https://files.pythonhosted.org/packages/ff/80/51ba3a4b7482f6011095b3a036e07374f64de180b7d870b704ed22509002/regex-2024.9.11-cp313-cp313-win_amd64.whl", hash = "sha256:042c55879cfeb21a8adacc84ea347721d3d83a159da6acdf1116859e2427c43f", size = 273510 }, +] + +[[package]] +name = "requests" +version = "2.32.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928 }, +] + +[[package]] +name = "rich" +version = "13.9.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown-it-py" }, + { name = "pygments" }, + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/aa/9e/1784d15b057b0075e5136445aaea92d23955aad2c93eaede673718a40d95/rich-13.9.2.tar.gz", hash = "sha256:51a2c62057461aaf7152b4d611168f93a9fc73068f8ded2790f29fe2b5366d0c", size = 222843 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/67/91/5474b84e505a6ccc295b2d322d90ff6aa0746745717839ee0c5fb4fdcceb/rich-13.9.2-py3-none-any.whl", hash = "sha256:8c82a3d3f8dcfe9e734771313e606b39d8247bb6b826e196f4914b333b743cf1", size = 242117 }, +] + +[[package]] +name = "ripplegw" +version = "0.0.9" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jax" }, + { name = "jaxlib" }, + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/52/68/0a8d7851a44c8ed6bcdd353337d2dc4e0a891e7cc2895f7fe9bbe17cbbd3/ripplegw-0.0.9.tar.gz", hash = "sha256:f0514364a1f5c530294f0c46e0efde01fecf05e8ee7bd04db256f44e0428de55", size = 452325 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b9/1c/bff356a2a6d8ce804d36778d35e8492e8309cd0f824b4f2669f408b16a3c/ripplegw-0.0.9-py3-none-any.whl", hash = "sha256:cd87ff6b3adb8d0651fc2bbbf7b4a21abc2c5bdc0680c8ec9c7b63d6d744b01a", size = 906662 }, +] + +[[package]] +name = "rpds-py" +version = "0.20.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/55/64/b693f262791b818880d17268f3f8181ef799b0d187f6f731b1772e05a29a/rpds_py-0.20.0.tar.gz", hash = "sha256:d72a210824facfdaf8768cf2d7ca25a042c30320b3020de2fa04640920d4e121", size = 25814 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/71/2d/a7e60483b72b91909e18f29a5c5ae847bac4e2ae95b77bb77e1f41819a58/rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3ad0fda1635f8439cde85c700f964b23ed5fc2d28016b32b9ee5fe30da5c84e2", size = 318432 }, + { url = "https://files.pythonhosted.org/packages/b5/b4/f15b0c55a6d880ce74170e7e28c3ed6c5acdbbd118df50b91d1dabf86008/rpds_py-0.20.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9bb4a0d90fdb03437c109a17eade42dfbf6190408f29b2744114d11586611d6f", size = 311333 }, + { url = "https://files.pythonhosted.org/packages/36/10/3f4e490fe6eb069c07c22357d0b4804cd94cb9f8d01345ef9b1d93482b9d/rpds_py-0.20.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6377e647bbfd0a0b159fe557f2c6c602c159fc752fa316572f012fc0bf67150", size = 366697 }, + { url = "https://files.pythonhosted.org/packages/f5/c8/cd6ab31b4424c7fab3b17e153b6ea7d1bb0d7cabea5c1ef683cc8adb8bc2/rpds_py-0.20.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb851b7df9dda52dc1415ebee12362047ce771fc36914586b2e9fcbd7d293b3e", size = 368386 }, + { url = "https://files.pythonhosted.org/packages/60/5e/642a44fda6dda90b5237af7a0ef1d088159c30a504852b94b0396eb62125/rpds_py-0.20.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1e0f80b739e5a8f54837be5d5c924483996b603d5502bfff79bf33da06164ee2", size = 395374 }, + { url = "https://files.pythonhosted.org/packages/7c/b5/ff18c093c9e72630f6d6242e5ccb0728ef8265ba0a154b5972f89d23790a/rpds_py-0.20.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a8c94dad2e45324fc74dce25e1645d4d14df9a4e54a30fa0ae8bad9a63928e3", size = 433189 }, + { url = "https://files.pythonhosted.org/packages/4a/6d/1166a157b227f2333f8e8ae320b6b7ea2a6a38fbe7a3563ad76dffc8608d/rpds_py-0.20.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8e604fe73ba048c06085beaf51147eaec7df856824bfe7b98657cf436623daf", size = 354849 }, + { url = "https://files.pythonhosted.org/packages/70/a4/70ea49863ea09ae4c2971f2eef58e80b757e3c0f2f618c5815bb751f7847/rpds_py-0.20.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:df3de6b7726b52966edf29663e57306b23ef775faf0ac01a3e9f4012a24a4140", size = 373233 }, + { url = "https://files.pythonhosted.org/packages/3b/d3/822a28152a1e7e2ba0dc5d06cf8736f4cd64b191bb6ec47fb51d1c3c5ccf/rpds_py-0.20.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:cf258ede5bc22a45c8e726b29835b9303c285ab46fc7c3a4cc770736b5304c9f", size = 541852 }, + { url = "https://files.pythonhosted.org/packages/c6/a5/6ef91e4425dc8b3445ff77d292fc4c5e37046462434a0423c4e0a596a8bd/rpds_py-0.20.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:55fea87029cded5df854ca7e192ec7bdb7ecd1d9a3f63d5c4eb09148acf4a7ce", size = 547630 }, + { url = "https://files.pythonhosted.org/packages/72/f8/d5625ee05c4e5c478954a16d9359069c66fe8ac8cd5ddf28f80d3b321837/rpds_py-0.20.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ae94bd0b2f02c28e199e9bc51485d0c5601f58780636185660f86bf80c89af94", size = 525766 }, + { url = "https://files.pythonhosted.org/packages/94/3c/1ff1ed6ae323b3e16fdfcdae0f0a67f373a6c3d991229dc32b499edeffb7/rpds_py-0.20.0-cp310-none-win32.whl", hash = "sha256:28527c685f237c05445efec62426d285e47a58fb05ba0090a4340b73ecda6dee", size = 199174 }, + { url = "https://files.pythonhosted.org/packages/ec/ba/5762c0aee2403dfea14ed74b0f8a2415cfdbb21cf745d600d9a8ac952c5b/rpds_py-0.20.0-cp310-none-win_amd64.whl", hash = "sha256:238a2d5b1cad28cdc6ed15faf93a998336eb041c4e440dd7f902528b8891b399", size = 213543 }, + { url = "https://files.pythonhosted.org/packages/ab/2a/191374c52d7be0b056cc2a04d718d2244c152f915d4a8d2db2aacc526189/rpds_py-0.20.0-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:ac2f4f7a98934c2ed6505aead07b979e6f999389f16b714448fb39bbaa86a489", size = 318369 }, + { url = "https://files.pythonhosted.org/packages/0e/6a/2c9fdcc6d235ac0d61ec4fd9981184689c3e682abd05e3caa49bccb9c298/rpds_py-0.20.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:220002c1b846db9afd83371d08d239fdc865e8f8c5795bbaec20916a76db3318", size = 311303 }, + { url = "https://files.pythonhosted.org/packages/d2/b2/725487d29633f64ef8f9cbf4729111a0b61702c8f8e94db1653930f52cce/rpds_py-0.20.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d7919548df3f25374a1f5d01fbcd38dacab338ef5f33e044744b5c36729c8db", size = 366424 }, + { url = "https://files.pythonhosted.org/packages/7a/8c/668195ab9226d01b7cf7cd9e59c1c0be1df05d602df7ec0cf46f857dcf59/rpds_py-0.20.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:758406267907b3781beee0f0edfe4a179fbd97c0be2e9b1154d7f0a1279cf8e5", size = 368359 }, + { url = "https://files.pythonhosted.org/packages/52/28/356f6a39c1adeb02cf3e5dd526f5e8e54e17899bef045397abcfbf50dffa/rpds_py-0.20.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3d61339e9f84a3f0767b1995adfb171a0d00a1185192718a17af6e124728e0f5", size = 394886 }, + { url = "https://files.pythonhosted.org/packages/a2/65/640fb1a89080a8fb6f4bebd3dafb65a2edba82e2e44c33e6eb0f3e7956f1/rpds_py-0.20.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1259c7b3705ac0a0bd38197565a5d603218591d3f6cee6e614e380b6ba61c6f6", size = 432416 }, + { url = "https://files.pythonhosted.org/packages/a7/e8/85835077b782555d6b3416874b702ea6ebd7db1f145283c9252968670dd5/rpds_py-0.20.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c1dc0f53856b9cc9a0ccca0a7cc61d3d20a7088201c0937f3f4048c1718a209", size = 354819 }, + { url = "https://files.pythonhosted.org/packages/4f/87/1ac631e923d65cbf36fbcfc6eaa702a169496de1311e54be142f178e53ee/rpds_py-0.20.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7e60cb630f674a31f0368ed32b2a6b4331b8350d67de53c0359992444b116dd3", size = 373282 }, + { url = "https://files.pythonhosted.org/packages/e4/ce/cb316f7970189e217b998191c7cf0da2ede3d5437932c86a7210dc1e9994/rpds_py-0.20.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:dbe982f38565bb50cb7fb061ebf762c2f254ca3d8c20d4006878766e84266272", size = 541540 }, + { url = "https://files.pythonhosted.org/packages/90/d7/4112d7655ec8aff168ecc91d4ceb51c557336edde7e6ccf6463691a2f253/rpds_py-0.20.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:514b3293b64187172bc77c8fb0cdae26981618021053b30d8371c3a902d4d5ad", size = 547640 }, + { url = "https://files.pythonhosted.org/packages/ab/44/4f61d64dfed98cc71623f3a7fcb612df636a208b4b2c6611eaa985e130a9/rpds_py-0.20.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d0a26ffe9d4dd35e4dfdd1e71f46401cff0181c75ac174711ccff0459135fa58", size = 525555 }, + { url = "https://files.pythonhosted.org/packages/35/f2/a862d81eacb21f340d584cd1c749c289979f9a60e9229f78bffc0418a199/rpds_py-0.20.0-cp311-none-win32.whl", hash = "sha256:89c19a494bf3ad08c1da49445cc5d13d8fefc265f48ee7e7556839acdacf69d0", size = 199338 }, + { url = "https://files.pythonhosted.org/packages/cc/ec/77d0674f9af4872919f3738018558dd9d37ad3f7ad792d062eadd4af7cba/rpds_py-0.20.0-cp311-none-win_amd64.whl", hash = "sha256:c638144ce971df84650d3ed0096e2ae7af8e62ecbbb7b201c8935c370df00a2c", size = 213585 }, + { url = "https://files.pythonhosted.org/packages/89/b7/f9682c5cc37fcc035f4a0fc33c1fe92ec9cbfdee0cdfd071cf948f53e0df/rpds_py-0.20.0-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a84ab91cbe7aab97f7446652d0ed37d35b68a465aeef8fc41932a9d7eee2c1a6", size = 321468 }, + { url = "https://files.pythonhosted.org/packages/b8/ad/fc82be4eaceb8d444cb6fc1956ce972b3a0795104279de05e0e4131d0a47/rpds_py-0.20.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:56e27147a5a4c2c21633ff8475d185734c0e4befd1c989b5b95a5d0db699b21b", size = 313062 }, + { url = "https://files.pythonhosted.org/packages/0e/1c/6039e80b13a08569a304dc13476dc986352dca4598e909384db043b4e2bb/rpds_py-0.20.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2580b0c34583b85efec8c5c5ec9edf2dfe817330cc882ee972ae650e7b5ef739", size = 370168 }, + { url = "https://files.pythonhosted.org/packages/dc/c9/5b9aa35acfb58946b4b785bc8e700ac313669e02fb100f3efa6176a83e81/rpds_py-0.20.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b80d4a7900cf6b66bb9cee5c352b2d708e29e5a37fe9bf784fa97fc11504bf6c", size = 371376 }, + { url = "https://files.pythonhosted.org/packages/7b/dd/0e0dbeb70d8a5357d2814764d467ded98d81d90d3570de4fb05ec7224f6b/rpds_py-0.20.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:50eccbf054e62a7b2209b28dc7a22d6254860209d6753e6b78cfaeb0075d7bee", size = 397200 }, + { url = "https://files.pythonhosted.org/packages/e4/da/a47d931eb688ccfd77a7389e45935c79c41e8098d984d87335004baccb1d/rpds_py-0.20.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:49a8063ea4296b3a7e81a5dfb8f7b2d73f0b1c20c2af401fb0cdf22e14711a96", size = 426824 }, + { url = "https://files.pythonhosted.org/packages/0f/f7/a59a673594e6c2ff2dbc44b00fd4ecdec2fc399bb6a7bd82d612699a0121/rpds_py-0.20.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea438162a9fcbee3ecf36c23e6c68237479f89f962f82dae83dc15feeceb37e4", size = 357967 }, + { url = "https://files.pythonhosted.org/packages/5f/61/3ba1905396b2cb7088f9503a460b87da33452da54d478cb9241f6ad16d00/rpds_py-0.20.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:18d7585c463087bddcfa74c2ba267339f14f2515158ac4db30b1f9cbdb62c8ef", size = 378905 }, + { url = "https://files.pythonhosted.org/packages/08/31/6d0df9356b4edb0a3a077f1ef714e25ad21f9f5382fc490c2383691885ea/rpds_py-0.20.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d4c7d1a051eeb39f5c9547e82ea27cbcc28338482242e3e0b7768033cb083821", size = 546348 }, + { url = "https://files.pythonhosted.org/packages/ae/15/d33c021de5cb793101df9961c3c746dfc476953dbbf5db337d8010dffd4e/rpds_py-0.20.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:e4df1e3b3bec320790f699890d41c59d250f6beda159ea3c44c3f5bac1976940", size = 553152 }, + { url = "https://files.pythonhosted.org/packages/70/2d/5536d28c507a4679179ab15aa0049440e4d3dd6752050fa0843ed11e9354/rpds_py-0.20.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2cf126d33a91ee6eedc7f3197b53e87a2acdac63602c0f03a02dd69e4b138174", size = 528807 }, + { url = "https://files.pythonhosted.org/packages/e3/62/7ebe6ec0d3dd6130921f8cffb7e34afb7f71b3819aa0446a24c5e81245ec/rpds_py-0.20.0-cp312-none-win32.whl", hash = "sha256:8bc7690f7caee50b04a79bf017a8d020c1f48c2a1077ffe172abec59870f1139", size = 200993 }, + { url = "https://files.pythonhosted.org/packages/ec/2f/b938864d66b86a6e4acadefdc56de75ef56f7cafdfd568a6464605457bd5/rpds_py-0.20.0-cp312-none-win_amd64.whl", hash = "sha256:0e13e6952ef264c40587d510ad676a988df19adea20444c2b295e536457bc585", size = 214458 }, + { url = "https://files.pythonhosted.org/packages/99/32/43b919a0a423c270a838ac2726b1c7168b946f2563fd99a51aaa9692d00f/rpds_py-0.20.0-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:aa9a0521aeca7d4941499a73ad7d4f8ffa3d1affc50b9ea11d992cd7eff18a29", size = 321465 }, + { url = "https://files.pythonhosted.org/packages/58/a9/c4d899cb28e9e47b0ff12462e8f827381f243176036f17bef9c1604667f2/rpds_py-0.20.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:4a1f1d51eccb7e6c32ae89243cb352389228ea62f89cd80823ea7dd1b98e0b91", size = 312900 }, + { url = "https://files.pythonhosted.org/packages/8f/90/9e51670575b5dfaa8c823369ef7d943087bfb73d4f124a99ad6ef19a2b26/rpds_py-0.20.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a86a9b96070674fc88b6f9f71a97d2c1d3e5165574615d1f9168ecba4cecb24", size = 370973 }, + { url = "https://files.pythonhosted.org/packages/fc/c1/523f2a03f853fc0d4c1acbef161747e9ab7df0a8abf6236106e333540921/rpds_py-0.20.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6c8ef2ebf76df43f5750b46851ed1cdf8f109d7787ca40035fe19fbdc1acc5a7", size = 370890 }, + { url = "https://files.pythonhosted.org/packages/51/ca/2458a771f16b0931de4d384decbe43016710bc948036c8f4562d6e063437/rpds_py-0.20.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b74b25f024b421d5859d156750ea9a65651793d51b76a2e9238c05c9d5f203a9", size = 397174 }, + { url = "https://files.pythonhosted.org/packages/00/7d/6e06807f6305ea2408b364efb0eef83a6e21b5e7b5267ad6b473b9a7e416/rpds_py-0.20.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:57eb94a8c16ab08fef6404301c38318e2c5a32216bf5de453e2714c964c125c8", size = 426449 }, + { url = "https://files.pythonhosted.org/packages/8c/d1/6c9e65260a819a1714510a7d69ac1d68aa23ee9ce8a2d9da12187263c8fc/rpds_py-0.20.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1940dae14e715e2e02dfd5b0f64a52e8374a517a1e531ad9412319dc3ac7879", size = 357698 }, + { url = "https://files.pythonhosted.org/packages/5d/fb/ecea8b5286d2f03eec922be7173a03ed17278944f7c124348f535116db15/rpds_py-0.20.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d20277fd62e1b992a50c43f13fbe13277a31f8c9f70d59759c88f644d66c619f", size = 378530 }, + { url = "https://files.pythonhosted.org/packages/e3/e3/ac72f858957f52a109c588589b73bd2fad4a0fc82387fb55fb34aeb0f9cd/rpds_py-0.20.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:06db23d43f26478303e954c34c75182356ca9aa7797d22c5345b16871ab9c45c", size = 545753 }, + { url = "https://files.pythonhosted.org/packages/b2/a4/a27683b519d5fc98e4390a3b130117d80fd475c67aeda8aac83c0e8e326a/rpds_py-0.20.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b2a5db5397d82fa847e4c624b0c98fe59d2d9b7cf0ce6de09e4d2e80f8f5b3f2", size = 552443 }, + { url = "https://files.pythonhosted.org/packages/a1/ed/c074d248409b4432b1ccb2056974175fa0af2d1bc1f9c21121f80a358fa3/rpds_py-0.20.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:5a35df9f5548fd79cb2f52d27182108c3e6641a4feb0f39067911bf2adaa3e57", size = 528380 }, + { url = "https://files.pythonhosted.org/packages/d5/bd/04caf938895d2d78201e89c0c8a94dfd9990c34a19ff52fb01d0912343e3/rpds_py-0.20.0-cp313-none-win32.whl", hash = "sha256:fd2d84f40633bc475ef2d5490b9c19543fbf18596dcb1b291e3a12ea5d722f7a", size = 200540 }, + { url = "https://files.pythonhosted.org/packages/95/cc/109eb8b9863680411ae703664abacaa035820c7755acc9686d5dd02cdd2e/rpds_py-0.20.0-cp313-none-win_amd64.whl", hash = "sha256:9bc2d153989e3216b0559251b0c260cfd168ec78b1fac33dd485750a228db5a2", size = 214111 }, + { url = "https://files.pythonhosted.org/packages/06/39/bf1f664c347c946ef56cecaa896e3693d91acc741afa78ebb3fdb7aba08b/rpds_py-0.20.0-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:617c7357272c67696fd052811e352ac54ed1d9b49ab370261a80d3b6ce385045", size = 319444 }, + { url = "https://files.pythonhosted.org/packages/c1/71/876135d3cb90d62468540b84e8e83ff4dc92052ab309bfdea7ea0b9221ad/rpds_py-0.20.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:9426133526f69fcaba6e42146b4e12d6bc6c839b8b555097020e2b78ce908dcc", size = 311699 }, + { url = "https://files.pythonhosted.org/packages/f7/da/8ccaeba6a3dda7467aebaf893de9eafd56275e2c90773c83bf15fb0b8374/rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:deb62214c42a261cb3eb04d474f7155279c1a8a8c30ac89b7dcb1721d92c3c02", size = 367825 }, + { url = "https://files.pythonhosted.org/packages/04/b6/02a54c47c178d180395b3c9a8bfb3b93906e08f9acf7b4a1067d27c3fae0/rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fcaeb7b57f1a1e071ebd748984359fef83ecb026325b9d4ca847c95bc7311c92", size = 369046 }, + { url = "https://files.pythonhosted.org/packages/a7/64/df4966743aa4def8727dc13d06527c8b13eb7412c1429def2d4701bee520/rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d454b8749b4bd70dd0a79f428731ee263fa6995f83ccb8bada706e8d1d3ff89d", size = 395896 }, + { url = "https://files.pythonhosted.org/packages/6f/d9/7ff03ff3642c600f27ff94512bb158a8d815fea5ed4162c75a7e850d6003/rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d807dc2051abe041b6649681dce568f8e10668e3c1c6543ebae58f2d7e617855", size = 432427 }, + { url = "https://files.pythonhosted.org/packages/b8/c6/e1b886f7277b3454e55e85332e165091c19114eecb5377b88d892fd36ccf/rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3c20f0ddeb6e29126d45f89206b8291352b8c5b44384e78a6499d68b52ae511", size = 355403 }, + { url = "https://files.pythonhosted.org/packages/e2/62/e26bd5b944e547c7bfd0b6ca7e306bfa430f8bd298ab72a1217976a7ca8d/rpds_py-0.20.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b7f19250ceef892adf27f0399b9e5afad019288e9be756d6919cb58892129f51", size = 374491 }, + { url = "https://files.pythonhosted.org/packages/c3/92/93c5a530898d3a5d1ce087455071ba714b77806ed9ffee4070d0c7a53b7e/rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4f1ed4749a08379555cebf4650453f14452eaa9c43d0a95c49db50c18b7da075", size = 543622 }, + { url = "https://files.pythonhosted.org/packages/01/9e/d68fba289625b5d3c9d1925825d7da716fbf812bda2133ac409021d5db13/rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:dcedf0b42bcb4cfff4101d7771a10532415a6106062f005ab97d1d0ab5681c60", size = 548558 }, + { url = "https://files.pythonhosted.org/packages/bf/d6/4b2fad4898154365f0f2bd72ffd190349274a4c1d6a6f94f02a83bb2b8f1/rpds_py-0.20.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:39ed0d010457a78f54090fafb5d108501b5aa5604cc22408fc1c0c77eac14344", size = 525753 }, + { url = "https://files.pythonhosted.org/packages/d2/ea/6f121d1802f3adae1981aea4209ea66f9d3c7f2f6d6b85ef4f13a61d17ef/rpds_py-0.20.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:bb273176be34a746bdac0b0d7e4e2c467323d13640b736c4c477881a3220a989", size = 213529 }, +] + +[[package]] +name = "safe-netrc" +version = "1.0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e4/f1/fb3c8ccd4a8963d7400cfd80100d5ae7fd95d49ace3a6722736bb4c1c1a6/safe-netrc-1.0.1.tar.gz", hash = "sha256:1dcc7263b4d9ce72e0109d8e2bc9ba89c8056ccc618d26c8c94802c6fd753720", size = 10846 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/2a/b5b09ff2781c7ea694b337f65f52a00319396578c049af8890ff9b4b8232/safe_netrc-1.0.1-py3-none-any.whl", hash = "sha256:5f0dd6a5e304b1da3be220f15efedbf09e50779fe90462143c228c781b9d8218", size = 10891 }, +] + +[[package]] +name = "scipy" +version = "1.14.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/62/11/4d44a1f274e002784e4dbdb81e0ea96d2de2d1045b2132d5af62cc31fd28/scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417", size = 58620554 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/64/68/3bc0cfaf64ff507d82b1e5d5b64521df4c8bf7e22bc0b897827cbee9872c/scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389", size = 39069598 }, + { url = "https://files.pythonhosted.org/packages/43/a5/8d02f9c372790326ad405d94f04d4339482ec082455b9e6e288f7100513b/scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3", size = 29879676 }, + { url = "https://files.pythonhosted.org/packages/07/42/0e0bea9666fcbf2cb6ea0205db42c81b1f34d7b729ba251010edf9c80ebd/scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0", size = 23088696 }, + { url = "https://files.pythonhosted.org/packages/15/47/298ab6fef5ebf31b426560e978b8b8548421d4ed0bf99263e1eb44532306/scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3", size = 25470699 }, + { url = "https://files.pythonhosted.org/packages/d8/df/cdb6be5274bc694c4c22862ac3438cb04f360ed9df0aecee02ce0b798380/scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d", size = 35606631 }, + { url = "https://files.pythonhosted.org/packages/47/78/b0c2c23880dd1e99e938ad49ccfb011ae353758a2dc5ed7ee59baff684c3/scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69", size = 41178528 }, + { url = "https://files.pythonhosted.org/packages/5d/aa/994b45c34b897637b853ec04334afa55a85650a0d11dacfa67232260fb0a/scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad", size = 42784535 }, + { url = "https://files.pythonhosted.org/packages/e7/1c/8daa6df17a945cb1a2a1e3bae3c49643f7b3b94017ff01a4787064f03f84/scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5", size = 44772117 }, + { url = "https://files.pythonhosted.org/packages/b2/ab/070ccfabe870d9f105b04aee1e2860520460ef7ca0213172abfe871463b9/scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675", size = 39076999 }, + { url = "https://files.pythonhosted.org/packages/a7/c5/02ac82f9bb8f70818099df7e86c3ad28dae64e1347b421d8e3adf26acab6/scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2", size = 29894570 }, + { url = "https://files.pythonhosted.org/packages/ed/05/7f03e680cc5249c4f96c9e4e845acde08eb1aee5bc216eff8a089baa4ddb/scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617", size = 23103567 }, + { url = "https://files.pythonhosted.org/packages/5e/fc/9f1413bef53171f379d786aabc104d4abeea48ee84c553a3e3d8c9f96a9c/scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8", size = 25499102 }, + { url = "https://files.pythonhosted.org/packages/c2/4b/b44bee3c2ddc316b0159b3d87a3d467ef8d7edfd525e6f7364a62cd87d90/scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37", size = 35586346 }, + { url = "https://files.pythonhosted.org/packages/93/6b/701776d4bd6bdd9b629c387b5140f006185bd8ddea16788a44434376b98f/scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2", size = 41165244 }, + { url = "https://files.pythonhosted.org/packages/06/57/e6aa6f55729a8f245d8a6984f2855696c5992113a5dc789065020f8be753/scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2", size = 42817917 }, + { url = "https://files.pythonhosted.org/packages/ea/c2/5ecadc5fcccefaece775feadcd795060adf5c3b29a883bff0e678cfe89af/scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94", size = 44781033 }, + { url = "https://files.pythonhosted.org/packages/c0/04/2bdacc8ac6387b15db6faa40295f8bd25eccf33f1f13e68a72dc3c60a99e/scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d", size = 39128781 }, + { url = "https://files.pythonhosted.org/packages/c8/53/35b4d41f5fd42f5781dbd0dd6c05d35ba8aa75c84ecddc7d44756cd8da2e/scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07", size = 29939542 }, + { url = "https://files.pythonhosted.org/packages/66/67/6ef192e0e4d77b20cc33a01e743b00bc9e68fb83b88e06e636d2619a8767/scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5", size = 23148375 }, + { url = "https://files.pythonhosted.org/packages/f6/32/3a6dedd51d68eb7b8e7dc7947d5d841bcb699f1bf4463639554986f4d782/scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc", size = 25578573 }, + { url = "https://files.pythonhosted.org/packages/f0/5a/efa92a58dc3a2898705f1dc9dbaf390ca7d4fba26d6ab8cfffb0c72f656f/scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310", size = 35319299 }, + { url = "https://files.pythonhosted.org/packages/8e/ee/8a26858ca517e9c64f84b4c7734b89bda8e63bec85c3d2f432d225bb1886/scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066", size = 40849331 }, + { url = "https://files.pythonhosted.org/packages/a5/cd/06f72bc9187840f1c99e1a8750aad4216fc7dfdd7df46e6280add14b4822/scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1", size = 42544049 }, + { url = "https://files.pythonhosted.org/packages/aa/7d/43ab67228ef98c6b5dd42ab386eae2d7877036970a0d7e3dd3eb47a0d530/scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f", size = 44521212 }, + { url = "https://files.pythonhosted.org/packages/50/ef/ac98346db016ff18a6ad7626a35808f37074d25796fd0234c2bb0ed1e054/scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79", size = 39091068 }, + { url = "https://files.pythonhosted.org/packages/b9/cc/70948fe9f393b911b4251e96b55bbdeaa8cca41f37c26fd1df0232933b9e/scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e", size = 29875417 }, + { url = "https://files.pythonhosted.org/packages/3b/2e/35f549b7d231c1c9f9639f9ef49b815d816bf54dd050da5da1c11517a218/scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73", size = 23084508 }, + { url = "https://files.pythonhosted.org/packages/3f/d6/b028e3f3e59fae61fb8c0f450db732c43dd1d836223a589a8be9f6377203/scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e", size = 25503364 }, + { url = "https://files.pythonhosted.org/packages/a7/2f/6c142b352ac15967744d62b165537a965e95d557085db4beab2a11f7943b/scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d", size = 35292639 }, + { url = "https://files.pythonhosted.org/packages/56/46/2449e6e51e0d7c3575f289f6acb7f828938eaab8874dbccfeb0cd2b71a27/scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e", size = 40798288 }, + { url = "https://files.pythonhosted.org/packages/32/cd/9d86f7ed7f4497c9fd3e39f8918dd93d9f647ba80d7e34e4946c0c2d1a7c/scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06", size = 42524647 }, + { url = "https://files.pythonhosted.org/packages/f5/1b/6ee032251bf4cdb0cc50059374e86a9f076308c1512b61c4e003e241efb7/scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84", size = 44469524 }, +] + +[[package]] +name = "scitokens" +version = "1.8.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cryptography" }, + { name = "pyjwt" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/dc/13/13372ff4f4b6335819d2592b7f10ff1e56513261558b2a4162f6d6cba971/scitokens-1.8.1.tar.gz", hash = "sha256:f255383d9c7402b3fcd20d5ed26a6b407b4be8bec6f282d0af29b6275382b54d", size = 48564 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/17/916811af05e98d86b347f3a9d9c2d490ef9e5c75dc5980842bf946a70ba3/scitokens-1.8.1-py3-none-any.whl", hash = "sha256:a5455d85969cd7c7b341ed8691ea89e0e446bd414a734f8443752081b049b46c", size = 31190 }, +] + +[[package]] +name = "setuptools" +version = "75.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/07/37/b31be7e4b9f13b59cde9dcaeff112d401d49e0dc5b37ed4a9fc8fb12f409/setuptools-75.2.0.tar.gz", hash = "sha256:753bb6ebf1f465a1912e19ed1d41f403a79173a9acf66a42e7e6aec45c3c16ec", size = 1350308 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/31/2d/90165d51ecd38f9a02c6832198c13a4e48652485e2ccf863ebb942c531b6/setuptools-75.2.0-py3-none-any.whl", hash = "sha256:a7fcb66f68b4d9e8e66b42f9876150a3371558f98fa32222ffaa5bced76406f8", size = 1249825 }, +] + +[[package]] +name = "six" +version = "1.16.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/71/39/171f1c67cd00715f190ba0b100d606d440a28c93c7714febeca8b79af85e/six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926", size = 34041 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d9/5a/e7c31adbe875f2abbb91bd84cf2dc52d792b5a01506781dbcf25c91daf11/six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254", size = 11053 }, +] + +[[package]] +name = "soupsieve" +version = "2.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/ce/fbaeed4f9fb8b2daa961f90591662df6a86c1abf25c548329a86920aedfb/soupsieve-2.6.tar.gz", hash = "sha256:e2e68417777af359ec65daac1057404a3c8a5455bb8abc36f1a9866ab1a51abb", size = 101569 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/c2/fe97d779f3ef3b15f05c94a2f1e3d21732574ed441687474db9d342a7315/soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9", size = 36186 }, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521 }, +] + +[[package]] +name = "tensorstore" +version = "0.1.66" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ml-dtypes" }, + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/64/51/d9389280f077c1cb8ecaea2790a752a57f43edeb3b26ddf2d5ef2bb0a642/tensorstore-0.1.66.tar.gz", hash = "sha256:b77ee47da8a1b3d6fd03e23a8f853a2a666037f03e21546b4eb2b4cf43e13a96", size = 6533222 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1b/50/7ded663a612389272bb4587f7569efd272722e08a99ca56941aa16e8b634/tensorstore-0.1.66-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:486be8ec698d2eb10f297353351ff69e90551297185a158d6875e097fa08de68", size = 15804475 }, + { url = "https://files.pythonhosted.org/packages/63/78/39c8f52be649022069b0b5e890506b74e6cce8e908bfcf9289adf1787cd8/tensorstore-0.1.66-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5af8bf532ae4cc75709093483043ccd1d0f480d0f2b5e965ee5724f7d229658c", size = 13923488 }, + { url = "https://files.pythonhosted.org/packages/b2/b0/2eee942c0c4b8b88e9b759e98b6b5dcf56af752e6abe3b8d5ef9c1b84240/tensorstore-0.1.66-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6de7521a0f1f0fb4c4bb80ba945cdd926c4301d1ff2d821946f1675c0f532f5c", size = 13979797 }, + { url = "https://files.pythonhosted.org/packages/98/48/88a939daeee29e9b184d4a5ad2ae27f2001dfe7a14936d8f27babdd9aa9a/tensorstore-0.1.66-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94523e656c013721924cb5a2955b6c80f3bc4b469dd3d89cb759ab38f1c96cac", size = 15306336 }, + { url = "https://files.pythonhosted.org/packages/c1/49/c293ea2ae70c43e3d8eb75dee1d0f5846016a3589f6a51160310f0f56699/tensorstore-0.1.66-cp310-cp310-win_amd64.whl", hash = "sha256:a92dfc7b05e959e5823a87b8a20dc291382d5a647dff49eb560d5516e3490346", size = 11982419 }, + { url = "https://files.pythonhosted.org/packages/7a/c5/093b09cbebe80590e681cb0bd4d1917a5ee8f198a0fd2ded63a0860f4df3/tensorstore-0.1.66-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:356e2a7fa256060c9da5d88cac6d9384d99887ab0df819c61f1dbe298ab56085", size = 15809330 }, + { url = "https://files.pythonhosted.org/packages/e2/3c/0508fb7778174c78bf98a423eee5448544249fad43947d8b324521d97e28/tensorstore-0.1.66-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:16c4474b10c90b27d422ccffd31f78ed7c2f2976330ac80a4b53a73fd8f041d9", size = 13927590 }, + { url = "https://files.pythonhosted.org/packages/20/d4/c394eaa8ee519082aed59e8d3e6f8256890eb4b0e76c81e2b741af35c442/tensorstore-0.1.66-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb3d9bc9156adaf2212953d941efd993b57a8da7053b93f512c1c313dfdddb89", size = 13979944 }, + { url = "https://files.pythonhosted.org/packages/cc/87/f86a03fdd3f39521eb2a3a2c1e0d90d3e6b776cf8c84f8dae65c43104e3e/tensorstore-0.1.66-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a150257280f580f73b3c037a8e60c56a51e5c81d4bc3a1a90cab0e00a292dddd", size = 15305741 }, + { url = "https://files.pythonhosted.org/packages/7f/bb/3c2312d05b1bce3b07b1e18bdb7a8f295594db9ab82816a07edf0cf01263/tensorstore-0.1.66-cp311-cp311-win_amd64.whl", hash = "sha256:afcfa90c5dfc969e2286a30df97b91588486f77b232793abdd7c2cfd20df29d5", size = 11982284 }, + { url = "https://files.pythonhosted.org/packages/55/cc/c7462525d077ae94ea574b28f75e424f8c1be91dbc3cef9b0a17c89637d2/tensorstore-0.1.66-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:3bd37baa5983b9707c2b5e63301a2091aac3c21fef9891b5fce67597f9cfd61e", size = 15844587 }, + { url = "https://files.pythonhosted.org/packages/6d/43/e7745b21c31a2a9e36f3b062200dcc803a68d5526f093d5b87acbe472cff/tensorstore-0.1.66-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0de07f34b181023f9179b1e2f7cb255dfad300a4d3f18639d5c4cc955ae88b6b", size = 13955417 }, + { url = "https://files.pythonhosted.org/packages/a1/a6/2306a87375cb7e5fe3bdc465b0050d43802565a0a59398920a43d56ac09c/tensorstore-0.1.66-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5ca2a389b8b274f3a8bef907469bc07f700001ee8ae0bc63a5164135c5afa8ee", size = 13968002 }, + { url = "https://files.pythonhosted.org/packages/70/66/69aaeac9dc02de80917acacfc74ac71af3b44cb7dfa1c84a559f57e2b7be/tensorstore-0.1.66-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4047f37ea0fbf665e25e918ad9d178fb2b3513203654ae10d8853d14e10a107", size = 15295727 }, + { url = "https://files.pythonhosted.org/packages/25/c8/bc42b40489833c70d61ff90edf6ca47eaa401b2f7d66b964b95b6060639b/tensorstore-0.1.66-cp312-cp312-win_amd64.whl", hash = "sha256:c974926fb2f3048fa3d36fc2fdf572403c7b70191193e83c5af78fdc46910b62", size = 11984388 }, +] + +[[package]] +name = "tinycss2" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/44/6f/38d2335a2b70b9982d112bb177e3dbe169746423e33f718bf5e9c7b3ddd3/tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d", size = 67360 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/4d/0db5b8a613d2a59bbc29bc5bb44a2f8070eb9ceab11c50d477502a8a0092/tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7", size = 22532 }, +] + +[[package]] +name = "tomli" +version = "2.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/b9/de2a5c0144d7d75a57ff355c0c24054f965b2dc3036456ae03a51ea6264b/tomli-2.0.2.tar.gz", hash = "sha256:d46d457a85337051c36524bc5349dd91b1877838e2979ac5ced3e710ed8a60ed", size = 16096 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cf/db/ce8eda256fa131af12e0a76d481711abe4681b6923c27efb9a255c9e4594/tomli-2.0.2-py3-none-any.whl", hash = "sha256:2ebe24485c53d303f690b0ec092806a085f07af5a5aa1464f3931eec36caaa38", size = 13237 }, +] + +[[package]] +name = "toolz" +version = "1.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8a/0b/d80dfa675bf592f636d1ea0b835eab4ec8df6e9415d8cfd766df54456123/toolz-1.0.0.tar.gz", hash = "sha256:2c86e3d9a04798ac556793bced838816296a2f085017664e4995cb40a1047a02", size = 66790 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/03/98/eb27cc78ad3af8e302c9d8ff4977f5026676e130d28dd7578132a457170c/toolz-1.0.0-py3-none-any.whl", hash = "sha256:292c8f1c4e7516bf9086f8850935c799a874039c8bcf959d47b600e4c44a6236", size = 56383 }, +] + +[[package]] +name = "tornado" +version = "6.4.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ee/66/398ac7167f1c7835406888a386f6d0d26ee5dbf197d8a571300be57662d3/tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9", size = 500623 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/d9/c33be3c1a7564f7d42d87a8d186371a75fd142097076767a5c27da941fef/tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8", size = 435924 }, + { url = "https://files.pythonhosted.org/packages/2e/0f/721e113a2fac2f1d7d124b3279a1da4c77622e104084f56119875019ffab/tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14", size = 433883 }, + { url = "https://files.pythonhosted.org/packages/13/cf/786b8f1e6fe1c7c675e79657448178ad65e41c1c9765ef82e7f6f765c4c5/tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4", size = 437224 }, + { url = "https://files.pythonhosted.org/packages/e4/8e/a6ce4b8d5935558828b0f30f3afcb2d980566718837b3365d98e34f6067e/tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842", size = 436597 }, + { url = "https://files.pythonhosted.org/packages/22/d4/54f9d12668b58336bd30defe0307e6c61589a3e687b05c366f804b7faaf0/tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3", size = 436797 }, + { url = "https://files.pythonhosted.org/packages/cf/3f/2c792e7afa7dd8b24fad7a2ed3c2f24a5ec5110c7b43a64cb6095cc106b8/tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f", size = 437516 }, + { url = "https://files.pythonhosted.org/packages/71/63/c8fc62745e669ac9009044b889fc531b6f88ac0f5f183cac79eaa950bb23/tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4", size = 436958 }, + { url = "https://files.pythonhosted.org/packages/94/d4/f8ac1f5bd22c15fad3b527e025ce219bd526acdbd903f52053df2baecc8b/tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698", size = 436882 }, + { url = "https://files.pythonhosted.org/packages/4b/3e/a8124c21cc0bbf144d7903d2a0cadab15cadaf683fa39a0f92bc567f0d4d/tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d", size = 438092 }, + { url = "https://files.pythonhosted.org/packages/d9/2f/3f2f05e84a7aff787a96d5fb06821323feb370fe0baed4db6ea7b1088f32/tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7", size = 438532 }, +] + +[[package]] +name = "tqdm" +version = "4.66.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "platform_system == 'Windows'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/83/6ba9844a41128c62e810fddddd72473201f3eacde02046066142a2d96cc5/tqdm-4.66.5.tar.gz", hash = "sha256:e1020aef2e5096702d8a025ac7d16b1577279c9d63f8375b63083e9a5f0fcbad", size = 169504 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/48/5d/acf5905c36149bbaec41ccf7f2b68814647347b72075ac0b1fe3022fdc73/tqdm-4.66.5-py3-none-any.whl", hash = "sha256:90279a3770753eafc9194a0364852159802111925aa30eb3f9d85b0e805ac7cd", size = 78351 }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359 }, +] + +[[package]] +name = "typed-argument-parser" +version = "1.10.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "docstring-parser" }, + { name = "packaging" }, + { name = "typing-inspect" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/cf/f0/b986539d89938ccd2ed7fd3a5f0f11250229e47b3bf7a7525786f36d2a3f/typed_argument_parser-1.10.1.tar.gz", hash = "sha256:117c2ef9ad6536d36f84f65eb7be035244c841fea34bd5abf2301a01c8a1ec89", size = 228573 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ea/07/0055bb513de2b7cf23b2bfc7eeeb6a6ae6ff7b287e2a62ab80cf403d61e9/typed_argument_parser-1.10.1-py3-none-any.whl", hash = "sha256:152cad218c84f23d9d4cbbfcb153a1a53fa0b330f0f7a4b85190dd4cb86f0c0a", size = 30407 }, +] + +[[package]] +name = "typeguard" +version = "2.13.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/3a/38/c61bfcf62a7b572b5e9363a802ff92559cb427ee963048e1442e3aef7490/typeguard-2.13.3.tar.gz", hash = "sha256:00edaa8da3a133674796cf5ea87d9f4b4c367d77476e185e80251cc13dfbb8c4", size = 40604 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9a/bb/d43e5c75054e53efce310e79d63df0ac3f25e34c926be5dffb7d283fb2a8/typeguard-2.13.3-py3-none-any.whl", hash = "sha256:5e3e3be01e887e7eafae5af63d1f36c849aaa94e3a0112097312aabfa16284f1", size = 17605 }, +] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/df/db/f35a00659bc03fec321ba8bce9420de607a1d37f8342eee1863174c69557/typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8", size = 85321 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/26/9f/ad63fc0248c5379346306f8668cda6e2e2e9c95e01216d2b8ffd9ff037d0/typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d", size = 37438 }, +] + +[[package]] +name = "typing-inspect" +version = "0.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mypy-extensions" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/dc/74/1789779d91f1961fa9438e9a8710cdae6bd138c80d7303996933d117264a/typing_inspect-0.9.0.tar.gz", hash = "sha256:b23fc42ff6f6ef6954e4852c1fb512cdd18dbea03134f91f856a95ccc9461f78", size = 13825 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/65/f3/107a22063bf27bdccf2024833d3445f4eea42b2e598abfbd46f6a63b6cb0/typing_inspect-0.9.0-py3-none-any.whl", hash = "sha256:9ee6fc59062311ef8547596ab6b955e1b8aa46242d854bfc78f4f6b0eff35f9f", size = 8827 }, +] + +[[package]] +name = "tzdata" +version = "2024.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e1/34/943888654477a574a86a98e9896bae89c7aa15078ec29f490fef2f1e5384/tzdata-2024.2.tar.gz", hash = "sha256:7d85cc416e9382e69095b7bdf4afd9e3880418a2413feec7069d533d6b4e31cc", size = 193282 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a6/ab/7e5f53c3b9d14972843a647d8d7a853969a58aecc7559cb3267302c94774/tzdata-2024.2-py2.py3-none-any.whl", hash = "sha256:a48093786cdcde33cad18c2555e8532f34422074448fbc874186f0abd79565cd", size = 346586 }, +] + +[[package]] +name = "tzlocal" +version = "5.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "tzdata", marker = "platform_system == 'Windows'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/04/d3/c19d65ae67636fe63953b20c2e4a8ced4497ea232c43ff8d01db16de8dc0/tzlocal-5.2.tar.gz", hash = "sha256:8d399205578f1a9342816409cc1e46a93ebd5755e39ea2d85334bea911bf0e6e", size = 30201 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/97/3f/c4c51c55ff8487f2e6d0e618dba917e3c3ee2caae6cf0fbb59c9b1876f2e/tzlocal-5.2-py3-none-any.whl", hash = "sha256:49816ef2fe65ea8ac19d19aa7a1ae0551c834303d5014c6d5a62e4cbda8047b8", size = 17859 }, +] + +[[package]] +name = "urllib3" +version = "2.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ed/63/22ba4ebfe7430b76388e7cd448d5478814d3032121827c12a2cc287e2260/urllib3-2.2.3.tar.gz", hash = "sha256:e7d814a81dad81e6caf2ec9fdedb284ecc9c73076b62654547cc64ccdcae26e9", size = 300677 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ce/d9/5f4c13cecde62396b0d3fe530a50ccea91e7dfc1ccf0e09c228841bb5ba8/urllib3-2.2.3-py3-none-any.whl", hash = "sha256:ca899ca043dcb1bafa3e262d73aa25c465bfb49e0bd9dd5d59f1d0acba2f8fac", size = 126338 }, +] + +[[package]] +name = "watchdog" +version = "5.0.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/48/a86139aaeab2db0a2482676f64798d8ac4d2dbb457523f50ab37bf02ce2c/watchdog-5.0.3.tar.gz", hash = "sha256:108f42a7f0345042a854d4d0ad0834b741d421330d5f575b81cb27b883500176", size = 129556 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/2b/dd2081aab6fc9e785c2eee7146d3c6de58e607f4e70049d715cd170cbf77/watchdog-5.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:85527b882f3facda0579bce9d743ff7f10c3e1e0db0a0d0e28170a7d0e5ce2ea", size = 96652 }, + { url = "https://files.pythonhosted.org/packages/9e/4f/f643c0a720d16ef7316aea06a79b96e229e59df4e0d83bec5e12713c1f29/watchdog-5.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:53adf73dcdc0ef04f7735066b4a57a4cd3e49ef135daae41d77395f0b5b692cb", size = 88651 }, + { url = "https://files.pythonhosted.org/packages/2b/72/acb22067d1f18161914c9b1087c703d63638131a9fde78090da290663407/watchdog-5.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e25adddab85f674acac303cf1f5835951345a56c5f7f582987d266679979c75b", size = 89289 }, + { url = "https://files.pythonhosted.org/packages/70/34/946f08602f8b8e6af45bc725e4a8013975a34883ab5570bd0d827a4c9829/watchdog-5.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f01f4a3565a387080dc49bdd1fefe4ecc77f894991b88ef927edbfa45eb10818", size = 96650 }, + { url = "https://files.pythonhosted.org/packages/96/2b/b84e35d49e8b0bad77e5d086fc1e2c6c833bbfe74d53144cfe8b26117eff/watchdog-5.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:91b522adc25614cdeaf91f7897800b82c13b4b8ac68a42ca959f992f6990c490", size = 88653 }, + { url = "https://files.pythonhosted.org/packages/d5/3f/41b5d77c10f450b79921c17b7d0b416616048867bfe63acaa072a619a0cb/watchdog-5.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d52db5beb5e476e6853da2e2d24dbbbed6797b449c8bf7ea118a4ee0d2c9040e", size = 89286 }, + { url = "https://files.pythonhosted.org/packages/1c/9b/8b206a928c188fdeb7b12e1c795199534cd44bdef223b8470129016009dd/watchdog-5.0.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:94d11b07c64f63f49876e0ab8042ae034674c8653bfcdaa8c4b32e71cfff87e8", size = 96739 }, + { url = "https://files.pythonhosted.org/packages/e1/26/129ca9cd0f8016672f37000010c2fedc0b86816e894ebdc0af9bb04a6439/watchdog-5.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:349c9488e1d85d0a58e8cb14222d2c51cbc801ce11ac3936ab4c3af986536926", size = 88708 }, + { url = "https://files.pythonhosted.org/packages/8f/b3/5e10ec32f0c429cdb55b1369066d6e83faf9985b3a53a4e37bb5c5e29aa0/watchdog-5.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:53a3f10b62c2d569e260f96e8d966463dec1a50fa4f1b22aec69e3f91025060e", size = 89309 }, + { url = "https://files.pythonhosted.org/packages/54/c4/49af4ab00bcfb688e9962eace2edda07a2cf89b9699ea536da48e8585cff/watchdog-5.0.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:950f531ec6e03696a2414b6308f5c6ff9dab7821a768c9d5788b1314e9a46ca7", size = 96740 }, + { url = "https://files.pythonhosted.org/packages/96/a4/b24de77cc9ae424c1687c9d4fb15aa560d7d7b28ba559aca72f781d0202b/watchdog-5.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ae6deb336cba5d71476caa029ceb6e88047fc1dc74b62b7c4012639c0b563906", size = 88711 }, + { url = "https://files.pythonhosted.org/packages/a4/71/3f2e9fe8403386b99d788868955b3a790f7a09721501a7e1eb58f514ffaa/watchdog-5.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1021223c08ba8d2d38d71ec1704496471ffd7be42cfb26b87cd5059323a389a1", size = 89319 }, + { url = "https://files.pythonhosted.org/packages/a2/d6/1d1ca81c75d903eca3fdb7061d93845485b58a5ba182d146843b88fc51c2/watchdog-5.0.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:90a67d7857adb1d985aca232cc9905dd5bc4803ed85cfcdcfcf707e52049eda7", size = 88172 }, + { url = "https://files.pythonhosted.org/packages/47/bb/d5e0abcfd6d729029a24766682e062526db8b59e9ae0c94aff509e0fd2b9/watchdog-5.0.3-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:720ef9d3a4f9ca575a780af283c8fd3a0674b307651c1976714745090da5a9e8", size = 88644 }, + { url = "https://files.pythonhosted.org/packages/60/33/7cb71c9df9a77b6927ee5f48d25e1de5562ce0fa7e0c56dcf2b0472e64a2/watchdog-5.0.3-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dd021efa85970bd4824acacbb922066159d0f9e546389a4743d56919b6758b91", size = 79335 }, + { url = "https://files.pythonhosted.org/packages/f6/91/320bc1496cf951a3cf93a7ffd18a581f0792c304be963d943e0e608c2919/watchdog-5.0.3-py3-none-manylinux2014_armv7l.whl", hash = "sha256:78864cc8f23dbee55be34cc1494632a7ba30263951b5b2e8fc8286b95845f82c", size = 79334 }, + { url = "https://files.pythonhosted.org/packages/8b/2c/567c5e042ed667d3544c43d48a65cf853450a2d2a9089d9523a65f195e94/watchdog-5.0.3-py3-none-manylinux2014_i686.whl", hash = "sha256:1e9679245e3ea6498494b3028b90c7b25dbb2abe65c7d07423ecfc2d6218ff7c", size = 79333 }, + { url = "https://files.pythonhosted.org/packages/c3/f0/64059fe162ef3274662e67bbdea6c45b3cd53e846d5bd1365fcdc3dc1d15/watchdog-5.0.3-py3-none-manylinux2014_ppc64.whl", hash = "sha256:9413384f26b5d050b6978e6fcd0c1e7f0539be7a4f1a885061473c5deaa57221", size = 79334 }, + { url = "https://files.pythonhosted.org/packages/f6/d9/19b7d02965be2801e2d0f6f4bde23e4ae172620071b65430fa0c2f8441ac/watchdog-5.0.3-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:294b7a598974b8e2c6123d19ef15de9abcd282b0fbbdbc4d23dfa812959a9e05", size = 79333 }, + { url = "https://files.pythonhosted.org/packages/cb/a1/5393ac6d0b095d3a44946b09258e9b5f22cb2fb67bcfa419dd868478826c/watchdog-5.0.3-py3-none-manylinux2014_s390x.whl", hash = "sha256:26dd201857d702bdf9d78c273cafcab5871dd29343748524695cecffa44a8d97", size = 79332 }, + { url = "https://files.pythonhosted.org/packages/a0/58/edec25190b6403caf4426dd418234f2358a106634b7d6aa4aec6939b104f/watchdog-5.0.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:0f9332243355643d567697c3e3fa07330a1d1abf981611654a1f2bf2175612b7", size = 79334 }, + { url = "https://files.pythonhosted.org/packages/97/69/cfb2d17ba8aabc73be2e2d03c8c319b1f32053a02c4b571852983aa24ff2/watchdog-5.0.3-py3-none-win32.whl", hash = "sha256:c66f80ee5b602a9c7ab66e3c9f36026590a0902db3aea414d59a2f55188c1f49", size = 79320 }, + { url = "https://files.pythonhosted.org/packages/91/b4/2b5b59358dadfa2c8676322f955b6c22cde4937602f40490e2f7403e548e/watchdog-5.0.3-py3-none-win_amd64.whl", hash = "sha256:f00b4cf737f568be9665563347a910f8bdc76f88c2970121c86243c8cfdf90e9", size = 79325 }, + { url = "https://files.pythonhosted.org/packages/38/b8/0aa69337651b3005f161f7f494e59188a1d8d94171666900d26d29d10f69/watchdog-5.0.3-py3-none-win_ia64.whl", hash = "sha256:49f4d36cb315c25ea0d946e018c01bb028048023b9e103d3d3943f58e109dd45", size = 79324 }, +] + +[[package]] +name = "wcwidth" +version = "0.2.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/63/53559446a878410fc5a5974feb13d31d78d752eb18aeba59c7fef1af7598/wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5", size = 101301 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166 }, +] + +[[package]] +name = "webencodings" +version = "0.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0b/02/ae6ceac1baeda530866a85075641cec12989bd8d31af6d5ab4a3e8c92f47/webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923", size = 9721 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", size = 11774 }, +] + +[[package]] +name = "zipp" +version = "3.20.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/54/bf/5c0000c44ebc80123ecbdddba1f5dcd94a5ada602a9c225d84b5aaa55e86/zipp-3.20.2.tar.gz", hash = "sha256:bc9eb26f4506fda01b81bcde0ca78103b6e62f991b381fec825435c836edbc29", size = 24199 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/62/8b/5ba542fa83c90e09eac972fc9baca7a88e7e7ca4b221a89251954019308b/zipp-3.20.2-py3-none-any.whl", hash = "sha256:a817ac80d6cf4b23bf7f2828b7cabf326f15a001bea8b1f9b49631780ba28350", size = 9200 }, +]