forked from google/btree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
btree_generic.go
1083 lines (984 loc) · 35.2 KB
/
btree_generic.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014-2022 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build go1.18
// +build go1.18
// In Go 1.18 and beyond, a BTreeG generic is created, and BTree is a specific
// instantiation of that generic for the Item interface, with a backwards-
// compatible API. Before go1.18, generics are not supported,
// and BTree is just an implementation based around the Item interface.
// Package btree implements in-memory B-Trees of arbitrary degree.
//
// btree implements an in-memory B-Tree for use as an ordered data structure.
// It is not meant for persistent storage solutions.
//
// It has a flatter structure than an equivalent red-black or other binary tree,
// which in some cases yields better memory usage and/or performance.
// See some discussion on the matter here:
// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
// Note, though, that this project is in no way related to the C++ B-Tree
// implementation written about there.
//
// Within this tree, each node contains a slice of items and a (possibly nil)
// slice of children. For basic numeric values or raw structs, this can cause
// efficiency differences when compared to equivalent C++ template code that
// stores values in arrays within the node:
// * Due to the overhead of storing values as interfaces (each
// value needs to be stored as the value itself, then 2 words for the
// interface pointing to that value and its type), resulting in higher
// memory use.
// * Since interfaces can point to values anywhere in memory, values are
// most likely not stored in contiguous blocks, resulting in a higher
// number of cache misses.
// These issues don't tend to matter, though, when working with strings or other
// heap-allocated structures, since C++-equivalent structures also must store
// pointers and also distribute their values across the heap.
//
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
// widely used ordered tree implementation in the Go ecosystem currently.
// Its functions, therefore, exactly mirror those of
// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
// support storing multiple equivalent values.
//
// There are two implementations; those suffixed with 'G' are generics, usable
// for any type, and require a passed-in "less" function to define their ordering.
// Those without this prefix are specific to the 'Item' interface, and use
// its 'Less' function for ordering.
package btree
import (
"fmt"
"io"
"sort"
"strings"
"sync"
)
// Item represents a single object in the tree.
type Item interface {
// Less tests whether the current item is less than the given argument.
//
// This must provide a strict weak ordering.
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
// hold one of either a or b in the tree).
Less(than Item) bool
}
const (
DefaultFreeListSize = 32
)
// FreeListG represents a free list of btree nodes. By default each
// BTree has its own FreeList, but multiple BTrees can share the same
// FreeList, in particular when they're created with Clone.
// Two Btrees using the same freelist are safe for concurrent write access.
type FreeListG[T any] struct {
mu sync.Mutex
freelist []*node[T]
}
// NewFreeListG creates a new free list.
// size is the maximum size of the returned free list.
func NewFreeListG[T any](size int) *FreeListG[T] {
return &FreeListG[T]{freelist: make([]*node[T], 0, size)}
}
func (f *FreeListG[T]) newNode() (n *node[T]) {
f.mu.Lock()
index := len(f.freelist) - 1
if index < 0 {
f.mu.Unlock()
return new(node[T])
}
n = f.freelist[index]
f.freelist[index] = nil
f.freelist = f.freelist[:index]
f.mu.Unlock()
return
}
func (f *FreeListG[T]) freeNode(n *node[T]) (out bool) {
f.mu.Lock()
if len(f.freelist) < cap(f.freelist) {
f.freelist = append(f.freelist, n)
out = true
}
f.mu.Unlock()
return
}
// ItemIteratorG allows callers of {A/De}scend* to iterate in-order over portions of
// the tree. When this function returns false, iteration will stop and the
// associated Ascend* function will immediately return.
type ItemIteratorG[T any] func(item T) bool
// Ordered represents the set of types for which the '<' operator work.
type Ordered interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 | ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~float32 | ~float64 | ~string
}
// Less[T] returns a default LessFunc that uses the '<' operator for types that support it.
func Less[T Ordered]() LessFunc[T] {
return func(a, b T) bool { return a < b }
}
// NewOrderedG creates a new B-Tree for ordered types.
func NewOrderedG[T Ordered](degree int) *BTreeG[T] {
return NewG[T](degree, Less[T]())
}
// NewG creates a new B-Tree with the given degree.
//
// NewG(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
// and 2-4 children).
//
// The passed-in LessFunc determines how objects of type T are ordered.
func NewG[T any](degree int, less LessFunc[T]) *BTreeG[T] {
return NewWithFreeListG(degree, less, NewFreeListG[T](DefaultFreeListSize))
}
// NewWithFreeListG creates a new B-Tree that uses the given node free list.
func NewWithFreeListG[T any](degree int, less LessFunc[T], f *FreeListG[T]) *BTreeG[T] {
if degree <= 1 {
panic("bad degree")
}
return &BTreeG[T]{
degree: degree,
cow: ©OnWriteContext[T]{freelist: f, less: less},
}
}
// items stores items in a node.
type items[T any] []T
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *items[T]) insertAt(index int, item T) {
var zero T
*s = append(*s, zero)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = item
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *items[T]) removeAt(index int) T {
item := (*s)[index]
copy((*s)[index:], (*s)[index+1:])
var zero T
(*s)[len(*s)-1] = zero
*s = (*s)[:len(*s)-1]
return item
}
// pop removes and returns the last element in the list.
func (s *items[T]) pop() (out T) {
index := len(*s) - 1
out = (*s)[index]
var zero T
(*s)[index] = zero
*s = (*s)[:index]
return
}
// truncate truncates this instance at index so that it contains only the
// first index items. index must be less than or equal to length.
func (s *items[T]) truncate(index int) {
var toClear items[T]
*s, toClear = (*s)[:index], (*s)[index:]
var zero T
for i := 0; i < len(toClear); i++ {
toClear[i] = zero
}
}
// find returns the index where the given item should be inserted into this
// list. 'found' is true if the item already exists in the list at the given
// index.
func (s items[T]) find(item T, less func(T, T) bool) (index int, found bool) {
i := sort.Search(len(s), func(i int) bool {
return less(item, s[i])
})
if i > 0 && !less(s[i-1], item) {
return i - 1, true
}
return i, false
}
// node is an internal node in a tree.
//
// It must at all times maintain the invariant that either
// * len(children) == 0, len(items) unconstrained
// * len(children) == len(items) + 1
type node[T any] struct {
items items[T]
children items[*node[T]]
cow *copyOnWriteContext[T]
}
func (n *node[T]) mutableFor(cow *copyOnWriteContext[T]) *node[T] {
if n.cow == cow {
return n
}
out := cow.newNode()
if cap(out.items) >= len(n.items) {
out.items = out.items[:len(n.items)]
} else {
out.items = make(items[T], len(n.items), cap(n.items))
}
copy(out.items, n.items)
// Copy children
if cap(out.children) >= len(n.children) {
out.children = out.children[:len(n.children)]
} else {
out.children = make(items[*node[T]], len(n.children), cap(n.children))
}
copy(out.children, n.children)
return out
}
func (n *node[T]) mutableChild(i int) *node[T] {
c := n.children[i].mutableFor(n.cow)
n.children[i] = c
return c
}
// split splits the given node at the given index. The current node shrinks,
// and this function returns the item that existed at that index and a new node
// containing all items/children after it.
func (n *node[T]) split(i int) (T, *node[T]) {
item := n.items[i]
next := n.cow.newNode()
next.items = append(next.items, n.items[i+1:]...)
n.items.truncate(i)
if len(n.children) > 0 {
next.children = append(next.children, n.children[i+1:]...)
n.children.truncate(i + 1)
}
return item, next
}
// maybeSplitChild checks if a child should be split, and if so splits it.
// Returns whether or not a split occurred.
func (n *node[T]) maybeSplitChild(i, maxItems int) bool {
if len(n.children[i].items) < maxItems {
return false
}
first := n.mutableChild(i)
item, second := first.split(maxItems / 2)
n.items.insertAt(i, item)
n.children.insertAt(i+1, second)
return true
}
// insert inserts an item into the subtree rooted at this node, making sure
// no nodes in the subtree exceed maxItems items. Should an equivalent item be
// be found/replaced by insert, it will be returned.
func (n *node[T]) insert(item T, maxItems int) (_ T, _ bool) {
i, found := n.items.find(item, n.cow.less)
if found {
out := n.items[i]
n.items[i] = item
return out, true
}
if len(n.children) == 0 {
n.items.insertAt(i, item)
return
}
if n.maybeSplitChild(i, maxItems) {
inTree := n.items[i]
switch {
case n.cow.less(item, inTree):
// no change, we want first split node
case n.cow.less(inTree, item):
i++ // we want second split node
default:
out := n.items[i]
n.items[i] = item
return out, true
}
}
return n.mutableChild(i).insert(item, maxItems)
}
// get finds the given key in the subtree and returns it.
func (n *node[T]) get(key T) (_ T, _ bool) {
i, found := n.items.find(key, n.cow.less)
if found {
return n.items[i], true
} else if len(n.children) > 0 {
return n.children[i].get(key)
}
return
}
// min returns the first item in the subtree.
func min[T any](n *node[T]) (_ T, found bool) {
if n == nil {
return
}
for len(n.children) > 0 {
n = n.children[0]
}
if len(n.items) == 0 {
return
}
return n.items[0], true
}
// max returns the last item in the subtree.
func max[T any](n *node[T]) (_ T, found bool) {
if n == nil {
return
}
for len(n.children) > 0 {
n = n.children[len(n.children)-1]
}
if len(n.items) == 0 {
return
}
return n.items[len(n.items)-1], true
}
// toRemove details what item to remove in a node.remove call.
type toRemove int
const (
removeItem toRemove = iota // removes the given item
removeMin // removes smallest item in the subtree
removeMax // removes largest item in the subtree
)
// remove removes an item from the subtree rooted at this node.
func (n *node[T]) remove(item T, minItems int, typ toRemove) (_ T, _ bool) {
var i int
var found bool
switch typ {
case removeMax:
if len(n.children) == 0 {
return n.items.pop(), true
}
i = len(n.items)
case removeMin:
if len(n.children) == 0 {
return n.items.removeAt(0), true
}
i = 0
case removeItem:
i, found = n.items.find(item, n.cow.less)
if len(n.children) == 0 {
if found {
return n.items.removeAt(i), true
}
return
}
default:
panic("invalid type")
}
// If we get to here, we have children.
if len(n.children[i].items) <= minItems {
return n.growChildAndRemove(i, item, minItems, typ)
}
child := n.mutableChild(i)
// Either we had enough items to begin with, or we've done some
// merging/stealing, because we've got enough now and we're ready to return
// stuff.
if found {
// The item exists at index 'i', and the child we've selected can give us a
// predecessor, since if we've gotten here it's got > minItems items in it.
out := n.items[i]
// We use our special-case 'remove' call with typ=maxItem to pull the
// predecessor of item i (the rightmost leaf of our immediate left child)
// and set it into where we pulled the item from.
var zero T
n.items[i], _ = child.remove(zero, minItems, removeMax)
return out, true
}
// Final recursive call. Once we're here, we know that the item isn't in this
// node and that the child is big enough to remove from.
return child.remove(item, minItems, typ)
}
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
// item from it while keeping it at minItems, then calls remove to actually
// remove it.
//
// Most documentation says we have to do two sets of special casing:
// 1) item is in this node
// 2) item is in child
// In both cases, we need to handle the two subcases:
// A) node has enough values that it can spare one
// B) node doesn't have enough values
// For the latter, we have to check:
// a) left sibling has node to spare
// b) right sibling has node to spare
// c) we must merge
// To simplify our code here, we handle cases #1 and #2 the same:
// If a node doesn't have enough items, we make sure it does (using a,b,c).
// We then simply redo our remove call, and the second time (regardless of
// whether we're in case 1 or 2), we'll have enough items and can guarantee
// that we hit case A.
func (n *node[T]) growChildAndRemove(i int, item T, minItems int, typ toRemove) (T, bool) {
if i > 0 && len(n.children[i-1].items) > minItems {
// Steal from left child
child := n.mutableChild(i)
stealFrom := n.mutableChild(i - 1)
stolenItem := stealFrom.items.pop()
child.items.insertAt(0, n.items[i-1])
n.items[i-1] = stolenItem
if len(stealFrom.children) > 0 {
child.children.insertAt(0, stealFrom.children.pop())
}
} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
// steal from right child
child := n.mutableChild(i)
stealFrom := n.mutableChild(i + 1)
stolenItem := stealFrom.items.removeAt(0)
child.items = append(child.items, n.items[i])
n.items[i] = stolenItem
if len(stealFrom.children) > 0 {
child.children = append(child.children, stealFrom.children.removeAt(0))
}
} else {
if i >= len(n.items) {
i--
}
child := n.mutableChild(i)
// merge with right child
mergeItem := n.items.removeAt(i)
mergeChild := n.children.removeAt(i + 1)
child.items = append(child.items, mergeItem)
child.items = append(child.items, mergeChild.items...)
child.children = append(child.children, mergeChild.children...)
n.cow.freeNode(mergeChild)
}
return n.remove(item, minItems, typ)
}
type direction int
const (
descend = direction(-1)
ascend = direction(+1)
)
type optionalItem[T any] struct {
item T
valid bool
}
func optional[T any](item T) optionalItem[T] {
return optionalItem[T]{item: item, valid: true}
}
func empty[T any]() optionalItem[T] {
return optionalItem[T]{}
}
// iterate provides a simple method for iterating over elements in the tree.
//
// When ascending, the 'start' should be less than 'stop' and when descending,
// the 'start' should be greater than 'stop'. Setting 'includeStart' to true
// will force the iterator to include the first item when it equals 'start',
// thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
// "greaterThan" or "lessThan" queries.
func (n *node[T]) iterate(dir direction, start, stop optionalItem[T], includeStart bool, hit bool, iter ItemIteratorG[T]) (bool, bool) {
var ok, found bool
var index int
switch dir {
case ascend:
if start.valid {
index, _ = n.items.find(start.item, n.cow.less)
}
for i := index; i < len(n.items); i++ {
if len(n.children) > 0 {
if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
if !includeStart && !hit && start.valid && !n.cow.less(start.item, n.items[i]) {
hit = true
continue
}
hit = true
if stop.valid && !n.cow.less(n.items[i], stop.item) {
return hit, false
}
if !iter(n.items[i]) {
return hit, false
}
}
if len(n.children) > 0 {
if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
case descend:
if start.valid {
index, found = n.items.find(start.item, n.cow.less)
if !found {
index = index - 1
}
} else {
index = len(n.items) - 1
}
for i := index; i >= 0; i-- {
if start.valid && !n.cow.less(n.items[i], start.item) {
if !includeStart || hit || n.cow.less(start.item, n.items[i]) {
continue
}
}
if len(n.children) > 0 {
if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
if stop.valid && !n.cow.less(stop.item, n.items[i]) {
return hit, false // continue
}
hit = true
if !iter(n.items[i]) {
return hit, false
}
}
if len(n.children) > 0 {
if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
}
return hit, true
}
// print is used for testing/debugging purposes.
func (n *node[T]) print(w io.Writer, level int) {
fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
for _, c := range n.children {
c.print(w, level+1)
}
}
// BTreeG is a generic implementation of a B-Tree.
//
// BTreeG stores items of type T in an ordered structure, allowing easy insertion,
// removal, and iteration.
//
// Write operations are not safe for concurrent mutation by multiple
// goroutines, but Read operations are.
type BTreeG[T any] struct {
degree int
length int
root *node[T]
cow *copyOnWriteContext[T]
}
// LessFunc[T] determines how to order a type 'T'. It should implement a strict
// ordering, and should return true if within that ordering, 'a' < 'b'.
type LessFunc[T any] func(a, b T) bool
// copyOnWriteContext pointers determine node ownership... a tree with a write
// context equivalent to a node's write context is allowed to modify that node.
// A tree whose write context does not match a node's is not allowed to modify
// it, and must create a new, writable copy (IE: it's a Clone).
//
// When doing any write operation, we maintain the invariant that the current
// node's context is equal to the context of the tree that requested the write.
// We do this by, before we descend into any node, creating a copy with the
// correct context if the contexts don't match.
//
// Since the node we're currently visiting on any write has the requesting
// tree's context, that node is modifiable in place. Children of that node may
// not share context, but before we descend into them, we'll make a mutable
// copy.
type copyOnWriteContext[T any] struct {
freelist *FreeListG[T]
less LessFunc[T]
}
// Clone clones the btree, lazily. Clone should not be called concurrently,
// but the original tree (t) and the new tree (t2) can be used concurrently
// once the Clone call completes.
//
// The internal tree structure of b is marked read-only and shared between t and
// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes
// whenever one of b's original nodes would have been modified. Read operations
// should have no performance degredation. Write operations for both t and t2
// will initially experience minor slow-downs caused by additional allocs and
// copies due to the aforementioned copy-on-write logic, but should converge to
// the original performance characteristics of the original tree.
func (t *BTreeG[T]) Clone() (t2 *BTreeG[T]) {
// Create two entirely new copy-on-write contexts.
// This operation effectively creates three trees:
// the original, shared nodes (old b.cow)
// the new b.cow nodes
// the new out.cow nodes
cow1, cow2 := *t.cow, *t.cow
out := *t
t.cow = &cow1
out.cow = &cow2
return &out
}
// maxItems returns the max number of items to allow per node.
func (t *BTreeG[T]) maxItems() int {
return t.degree*2 - 1
}
// minItems returns the min number of items to allow per node (ignored for the
// root node).
func (t *BTreeG[T]) minItems() int {
return t.degree - 1
}
func (c *copyOnWriteContext[T]) newNode() (n *node[T]) {
n = c.freelist.newNode()
n.cow = c
return
}
type freeType int
const (
ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
ftStored // node was stored in the freelist for later use
ftNotOwned // node was ignored by COW, since it's owned by another one
)
// freeNode frees a node within a given COW context, if it's owned by that
// context. It returns what happened to the node (see freeType const
// documentation).
func (c *copyOnWriteContext[T]) freeNode(n *node[T]) freeType {
if n.cow == c {
// clear to allow GC
n.items.truncate(0)
n.children.truncate(0)
n.cow = nil
if c.freelist.freeNode(n) {
return ftStored
} else {
return ftFreelistFull
}
} else {
return ftNotOwned
}
}
// ReplaceOrInsert adds the given item to the tree. If an item in the tree
// already equals the given one, it is removed from the tree and returned,
// and the second return value is true. Otherwise, (zeroValue, false)
//
// nil cannot be added to the tree (will panic).
func (t *BTreeG[T]) ReplaceOrInsert(item T) (_ T, _ bool) {
if t.root == nil {
t.root = t.cow.newNode()
t.root.items = append(t.root.items, item)
t.length++
return
} else {
t.root = t.root.mutableFor(t.cow)
if len(t.root.items) >= t.maxItems() {
item2, second := t.root.split(t.maxItems() / 2)
oldroot := t.root
t.root = t.cow.newNode()
t.root.items = append(t.root.items, item2)
t.root.children = append(t.root.children, oldroot, second)
}
}
out, outb := t.root.insert(item, t.maxItems())
if !outb {
t.length++
}
return out, outb
}
// Delete removes an item equal to the passed in item from the tree, returning
// it. If no such item exists, returns (zeroValue, false).
func (t *BTreeG[T]) Delete(item T) (T, bool) {
return t.deleteItem(item, removeItem)
}
// DeleteMin removes the smallest item in the tree and returns it.
// If no such item exists, returns (zeroValue, false).
func (t *BTreeG[T]) DeleteMin() (T, bool) {
var zero T
return t.deleteItem(zero, removeMin)
}
// DeleteMax removes the largest item in the tree and returns it.
// If no such item exists, returns (zeroValue, false).
func (t *BTreeG[T]) DeleteMax() (T, bool) {
var zero T
return t.deleteItem(zero, removeMax)
}
func (t *BTreeG[T]) deleteItem(item T, typ toRemove) (_ T, _ bool) {
if t.root == nil || len(t.root.items) == 0 {
return
}
t.root = t.root.mutableFor(t.cow)
out, outb := t.root.remove(item, t.minItems(), typ)
if len(t.root.items) == 0 && len(t.root.children) > 0 {
oldroot := t.root
t.root = t.root.children[0]
t.cow.freeNode(oldroot)
}
if outb {
t.length--
}
return out, outb
}
// AscendRange calls the iterator for every value in the tree within the range
// [greaterOrEqual, lessThan), until iterator returns false.
func (t *BTreeG[T]) AscendRange(greaterOrEqual, lessThan T, iterator ItemIteratorG[T]) {
if t.root == nil {
return
}
t.root.iterate(ascend, optional[T](greaterOrEqual), optional[T](lessThan), true, false, iterator)
}
// AscendLessThan calls the iterator for every value in the tree within the range
// [first, pivot), until iterator returns false.
func (t *BTreeG[T]) AscendLessThan(pivot T, iterator ItemIteratorG[T]) {
if t.root == nil {
return
}
t.root.iterate(ascend, empty[T](), optional(pivot), false, false, iterator)
}
// AscendGreaterOrEqual calls the iterator for every value in the tree within
// the range [pivot, last], until iterator returns false.
func (t *BTreeG[T]) AscendGreaterOrEqual(pivot T, iterator ItemIteratorG[T]) {
if t.root == nil {
return
}
t.root.iterate(ascend, optional[T](pivot), empty[T](), true, false, iterator)
}
// Ascend calls the iterator for every value in the tree within the range
// [first, last], until iterator returns false.
func (t *BTreeG[T]) Ascend(iterator ItemIteratorG[T]) {
if t.root == nil {
return
}
t.root.iterate(ascend, empty[T](), empty[T](), false, false, iterator)
}
// DescendRange calls the iterator for every value in the tree within the range
// [lessOrEqual, greaterThan), until iterator returns false.
func (t *BTreeG[T]) DescendRange(lessOrEqual, greaterThan T, iterator ItemIteratorG[T]) {
if t.root == nil {
return
}
t.root.iterate(descend, optional[T](lessOrEqual), optional[T](greaterThan), true, false, iterator)
}
// DescendLessOrEqual calls the iterator for every value in the tree within the range
// [pivot, first], until iterator returns false.
func (t *BTreeG[T]) DescendLessOrEqual(pivot T, iterator ItemIteratorG[T]) {
if t.root == nil {
return
}
t.root.iterate(descend, optional[T](pivot), empty[T](), true, false, iterator)
}
// DescendGreaterThan calls the iterator for every value in the tree within
// the range [last, pivot), until iterator returns false.
func (t *BTreeG[T]) DescendGreaterThan(pivot T, iterator ItemIteratorG[T]) {
if t.root == nil {
return
}
t.root.iterate(descend, empty[T](), optional[T](pivot), false, false, iterator)
}
// Descend calls the iterator for every value in the tree within the range
// [last, first], until iterator returns false.
func (t *BTreeG[T]) Descend(iterator ItemIteratorG[T]) {
if t.root == nil {
return
}
t.root.iterate(descend, empty[T](), empty[T](), false, false, iterator)
}
// Get looks for the key item in the tree, returning it. It returns
// (zeroValue, false) if unable to find that item.
func (t *BTreeG[T]) Get(key T) (_ T, _ bool) {
if t.root == nil {
return
}
return t.root.get(key)
}
// Min returns the smallest item in the tree, or (zeroValue, false) if the tree is empty.
func (t *BTreeG[T]) Min() (_ T, _ bool) {
return min(t.root)
}
// Max returns the largest item in the tree, or (zeroValue, false) if the tree is empty.
func (t *BTreeG[T]) Max() (_ T, _ bool) {
return max(t.root)
}
// Has returns true if the given key is in the tree.
func (t *BTreeG[T]) Has(key T) bool {
_, ok := t.Get(key)
return ok
}
// Len returns the number of items currently in the tree.
func (t *BTreeG[T]) Len() int {
return t.length
}
// Clear removes all items from the btree. If addNodesToFreelist is true,
// t's nodes are added to its freelist as part of this call, until the freelist
// is full. Otherwise, the root node is simply dereferenced and the subtree
// left to Go's normal GC processes.
//
// This can be much faster
// than calling Delete on all elements, because that requires finding/removing
// each element in the tree and updating the tree accordingly. It also is
// somewhat faster than creating a new tree to replace the old one, because
// nodes from the old tree are reclaimed into the freelist for use by the new
// one, instead of being lost to the garbage collector.
//
// This call takes:
// O(1): when addNodesToFreelist is false, this is a single operation.
// O(1): when the freelist is already full, it breaks out immediately
// O(freelist size): when the freelist is empty and the nodes are all owned
// by this tree, nodes are added to the freelist until full.
// O(tree size): when all nodes are owned by another tree, all nodes are
// iterated over looking for nodes to add to the freelist, and due to
// ownership, none are.
func (t *BTreeG[T]) Clear(addNodesToFreelist bool) {
if t.root != nil && addNodesToFreelist {
t.root.reset(t.cow)
}
t.root, t.length = nil, 0
}
// reset returns a subtree to the freelist. It breaks out immediately if the
// freelist is full, since the only benefit of iterating is to fill that
// freelist up. Returns true if parent reset call should continue.
func (n *node[T]) reset(c *copyOnWriteContext[T]) bool {
for _, child := range n.children {
if !child.reset(c) {
return false
}
}
return c.freeNode(n) != ftFreelistFull
}
// Int implements the Item interface for integers.
type Int int
// Less returns true if int(a) < int(b).
func (a Int) Less(b Item) bool {
return a < b.(Int)
}
// BTree is an implementation of a B-Tree.
//
// BTree stores Item instances in an ordered structure, allowing easy insertion,
// removal, and iteration.
//
// Write operations are not safe for concurrent mutation by multiple
// goroutines, but Read operations are.
type BTree BTreeG[Item]
var itemLess LessFunc[Item] = func(a, b Item) bool {
return a.Less(b)
}
// New creates a new B-Tree with the given degree.
//
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
// and 2-4 children).
func New(degree int) *BTree {
return (*BTree)(NewG[Item](degree, itemLess))
}
// FreeList represents a free list of btree nodes. By default each
// BTree has its own FreeList, but multiple BTrees can share the same
// FreeList.
// Two Btrees using the same freelist are safe for concurrent write access.
type FreeList FreeListG[Item]
// NewFreeList creates a new free list.
// size is the maximum size of the returned free list.
func NewFreeList(size int) *FreeList {
return (*FreeList)(NewFreeListG[Item](size))
}
// NewWithFreeList creates a new B-Tree that uses the given node free list.
func NewWithFreeList(degree int, f *FreeList) *BTree {
return (*BTree)(NewWithFreeListG[Item](degree, itemLess, (*FreeListG[Item])(f)))
}
// ItemIterator allows callers of Ascend* to iterate in-order over portions of
// the tree. When this function returns false, iteration will stop and the
// associated Ascend* function will immediately return.
type ItemIterator ItemIteratorG[Item]
// Clone clones the btree, lazily. Clone should not be called concurrently,
// but the original tree (t) and the new tree (t2) can be used concurrently
// once the Clone call completes.
//
// The internal tree structure of b is marked read-only and shared between t and
// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes
// whenever one of b's original nodes would have been modified. Read operations
// should have no performance degredation. Write operations for both t and t2
// will initially experience minor slow-downs caused by additional allocs and
// copies due to the aforementioned copy-on-write logic, but should converge to
// the original performance characteristics of the original tree.
func (t *BTree) Clone() (t2 *BTree) {
return (*BTree)((*BTreeG[Item])(t).Clone())
}
// Delete removes an item equal to the passed in item from the tree, returning
// it. If no such item exists, returns nil.
func (t *BTree) Delete(item Item) Item {
i, _ := (*BTreeG[Item])(t).Delete(item)
return i
}
// DeleteMax removes the largest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMax() Item {
i, _ := (*BTreeG[Item])(t).DeleteMax()
return i
}
// DeleteMin removes the smallest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMin() Item {
i, _ := (*BTreeG[Item])(t).DeleteMin()
return i
}
// Get looks for the key item in the tree, returning it. It returns nil if
// unable to find that item.
func (t *BTree) Get(key Item) Item {
i, _ := (*BTreeG[Item])(t).Get(key)
return i
}
// Max returns the largest item in the tree, or nil if the tree is empty.
func (t *BTree) Max() Item {
i, _ := (*BTreeG[Item])(t).Max()
return i
}
// Min returns the smallest item in the tree, or nil if the tree is empty.
func (t *BTree) Min() Item {
i, _ := (*BTreeG[Item])(t).Min()
return i
}
// Has returns true if the given key is in the tree.
func (t *BTree) Has(key Item) bool {
return (*BTreeG[Item])(t).Has(key)
}
// ReplaceOrInsert adds the given item to the tree. If an item in the tree
// already equals the given one, it is removed from the tree and returned.
// Otherwise, nil is returned.