remove.groups(count=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.count_table,
fasta=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.fasta,
taxonomy=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pds.wang.pick.taxonomy,
groups=Mock)
dist.seqs(fasta=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.fasta,
cutoff=0.20, processors=2)
Why is the cutoff used here? and how does mothur use that cutoff to build the distance matrix
cluster(column=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.dist,
count=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.count_table,
method=average, cutoff=0.20)
Note: in the newest MiSeq SOP this method is replaced by the optiClust
algorithm.
make.shared(list=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.an.unique_list.list,
count=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.count_table,
label=0.03)
classify.otu(list=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.an.unique_list.list,
count=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.count_table,
taxonomy=stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pds.wang.pick.pick.taxonomy,
label=0.03)
system(cp stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.dist final.dist)
system(cp stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.fasta final.fasta)
system(cp stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.an_unique_list final.list)
system(cp stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.an_unique_list.0.03.cons.taxonomy final.0.03.taxonomy)
system(cp stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.an_unique_list.0.03.cons.tax.summary final.0.03.tax.summary)
system(cp stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.an_unique_list.shared final.shared
system(cp stability.trim.contigs.good.unique.good.filter.unique.precluster.pick.pick.pick.count_table final.count_table)
Now we have the final datasets, that can be used for diversity analysis using otu
##Preparing for diversity analysis
count.groups(shared=final.shared)
It is important that you check if your samples match the size(2401) indicated here, if not that use the smallest sample size in your analysis.
subsample(shared=final.shared, size=2401)
rarefaction.single(shared=final.0.03.subsample.shared,
calc=sobs, freq=100)
summary.single(shared=final.shared,
calc=nseqs-coverage-sobs-invsimpson,
subsample=2401)