forked from openturns/openturns
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ChangeLog
3114 lines (2778 loc) · 156 KB
/
ChangeLog
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
= New Features =
== 1.24 release (in progress) == #release-1.24
=== Library ===
==== Major changes ====
* Swapped InverseGamma shape/scale parameters: InverseGamma(k, lambda)
* New Gaussian process regression classes
==== New classes ====
==== API changes ====
* SmolyakExperiment left the experimental module
* Removed deprecated method Study.printLabels
* Removed deprecated class TimerCallback
* Removed deprecated MetaModelValidation(inputSample, outputSample, metaModel) ctor
* Removed deprecated MetaModelValidation::computePredictivityFactor method
* Removed deprecated Solver.set/getMaximumFunctionEvaluation
* Removed deprecated Solver.getUsedFunctionEvaluation
* Removed deprecated Sample/CorrelationAnalysis.computePearsonCorrelation
* Removed deprecated Cobyla/TNC.setIgnoreFailure method
* Removed deprecated OptimizationAlgorithm.setMaximumEvaluationNumber method
* Removed deprecated OptimizationResult.getEvaluationNumber
=== Documentation ===
* Copy button for code blocks
=== Python module ===
=== Miscellaneous ===
== 1.23 release (2024-06-05) == #release-1.23
=== Library ===
==== Major changes ====
* New GPD estimation services: MLE, profiled likelihood, time-varying, return level, covariates, clustering
* New GEV covariates estimation method, profiled likelihood by blocks
* Rank-based Sobol indices estimation
* Vector=>Field chaos-based metamodel and sensitivity algorithm
==== New classes ====
* FunctionalChaosValidation (openturns.experimental)
* SmoothedUniformFactory (openturns.experimental)
* GeneralizedParetoValidation (openturns.experimental)
* SamplePartition (openturns.experimental)
* PointToFieldFunctionalChaosAlgorithm (openturns.experimental)
* CubaIntegration (openturns.experimental)
* ExperimentIntegration (openturns.experimental)
* RankSobolSensitivityAlgorithm (openturns.experimental)
* UniformOrderStatistics (openturns.experimental)
==== API changes ====
* Deprecated MetaModelValidation(inputSample, outputSample, metaModel) is deprecated in favor of MetaModelValidation(outputSample, metamodelPredictions)
* Deprecated MetaModelValidation::computePredictivityFactor method, use computeR2Score
* Deprecated MetaModelValidation::getInputSample method
* Removed deprecated Pagmo.setGenerationNumber
* Removed deprecated NLopt.SetSeed
* Removed deprecated IterativeThresholdExceedance(dimension, threshold) ctor
* Removed deprecated Linear|QuadraticLeastSquares(Sample, Function) constructor
* Removed deprecated SubsetSampling.setKeepEventSample, getEventInputSample, getEventOutputSample
* Removed deprecated SubsetSampling.setISubset, setBetaMin
* Removed deprecated LHS
* Removed deprecated OptimizationAlgorithm.set/getVerbose
* Removed deprecated DickeyFullerTest.setVerbose/getVerbose
* Removed deprecated MetropolisHasting.setVerbose/getVerbose
* Removed deprecated BasisSequenceFactory.setVerbose/getVerbose
* Removed deprecated SimulationAlgorithm.setVerbose/getVerbose
* Removed deprecated WhittleFactory.setVerbose/getVerbose
* Removed deprecated CLassifier.setVerbose/getVerbose
* Removed deprecated ARMALLHF.setVerbose/getVerbose
* Removed deprecated CleaningStrategy.setVerbose/getVerbose
* Removed deprecated ApproximationAlgorithm.setVerbose/getVerbose
* Removed deprecated EllipticalDistribution.setCorrelation/getCorrelation
* Removed deprecated EllipticalDistribution.setMean
* Removed deprecated Distribution.computeDensityGenerator
* Removed deprecated Point.clean
* Removed deprecated (Inverse)Gamma.setKLambda
* Removed deprecated Os::GetEndOfLine
* Deprecated Sample|CorrelationAnalysis::computePearsonCorrelation in favor of computeLinearCorrelation
* Deprecated Cobyla::setIgnoreFailure, TNC::setIgnoreFailure in favor of setCheckStatus
* Deprecated OptimizationAlgorithm.set/getMaximumEvaluationNumber in favor of set/getMaximumCallsNumber
* Deprecated OptimizationResult.set/getEvaluationNumber in favor of set/getCallsNumber
* Deprecated Solver.set/getMaximumFunctionEvaluation in favor of set/getMaximumCallsNumber
* Deprecated Solver.getUsedFunctionEvaluation in favor of getCallsNumber
* Deprecated TimerCallback
* Deprecated ComposedDistribution in favor of JointDistribution
* Deprecated ComposedCopula in favor of BlockIndependentCopula
* Added Polygon::FillBetween static method to fill the surface between two curves
* Deprecated Study.printLabels (see getLabels)
* Removed optional parameters from Contour constructors, use set methods or ResourceMap keys to set them
=== Documentation ===
* Examples show how to visualize matrices
* Enforce check of internal links with sphinx nitpicky option
=== Python module ===
* Graphs apply default colors to Drawables with no explicit color
* Contour plots can now be filled and come with colorbars
* Binary wheels are now compatible with uv package manager
=== Miscellaneous ===
* CovarianceModel nuggetFactor can be optimized by KrigingAlgorithm
* UniformOverMesh left the experimental module
* IntegrationExpansion/LeastSquaresExpansion left the experimental module
* Allow to set optimization/simulation algorithm maximum run time duration
* New OptimizationAlgorithm API to retrieve return code and error message
* Improved TruncatedDistribution to use CDF inversion instead of rejection method to generate n-d samples
* Faster marginal distribution PDF computation by integration on marginalized components
* Extendend the JointDistribution to use any distribution defined on the unit cube that is not a copula
=== Bug fixes (total 53) ===
* #1252 (In NumericalMathFunction class, getCallsNumber and getEvaluationCallsNumber return the same information API)
* #1430 (The MetaModelValidation class has no graphics)
* #2067 (Can't compute of a marginal of a BayesDistribution->it takes ages!)
* #2218 (Split keepIntact methods)
* #2332 (The doc of Sobol' indices has issues)
* #2359 (The Sample help page does not show how to set a column)
* #2361 (Inconsistency in the documentation of KrigingAlgorithm)
* #2364 (KrigingAlgorithm: examples set bounds before disabling optimization)
* #2366 (The maths notations in the help pages are inconsistent)
* #2427 (Rename ComposedDistribution to JointDistribution ?)
* #2446 (The polynomial_sparse_least_squares theory help page can be improved)
* #2460 (Cobyla returns an internal exception when maximum number of evaluations is reached)
* #2474 (Coupling tools replace method is not robust to inputs larger than 10)
* #2477 (Deprecate Sample.computeLinearCorrelation ?)
* #2479 (Number of calls to objective function due to gradient approximation not always counted in OptimizationResult.getEvaluationNumber())
* #2489 (Inconsistent Evaluation number in drawOptimalValueHistory())
* #2500 (MarshallOlkinCopula missing computePDF ?)
* #2507 (The computeComplementaryCDF and computeSurvivalFunction methods are unclear)
* #2508 (Cobyla claim to support bounds, but does not)
* #2511 (Drop SpecFunc::IsNaN/IsInf)
* #2513 (Binomial quantile computation fails on extreme example)
* #2517 (Cannot build OpenTURNS with doc if optional dependencies bison/flex are unavailable)
* #2524 (Bayes distribution order)
* #2525 (Geometric range starts at 1)
* #2526 (BestModelChiSquared does not handle exceptions)
* #2527 (Strange probabilistic model for the fire satellite use-case)
* #2531 (StandardDistributionPolynomialFactory produces NaN and Infs)
* #2535 (undocumented SaltelliSensitivityAlgorithm model argument)
* #2541 (The computeQuantile() method of a Mixture can fail)
* #2544 (Example of multi output Kriging on the fire satellite model: paramers are not optimized)
* #2545 (Formatting Issues on LatentVariableModel)
* #2548 (Distribution::computeQuantile(p) can be computed for p<0 or p>1)
* #2552 (ComputeQuantile for discrete variables)
* #2557 (Shipping openturns and poissoninv GPL license)
* #2558 (Typos in Copulas theory documentation)
* #2563 (SimulatedAnnealingLHS.generate does not terminate for LHS of size 1)
* #2567 (The PythonRandomVector.getSample() method returns a 0-dimension sample)
* #2570 (MarginalDistribution test is disabled)
* #2571 (Drawables order is not preserved by the viewer)
* #2593 (Formatting of input and output arguments in the API help page)
* #2596 (The legends of the drawPDF() graph have a wrong order)
* #2602 (The pretty-print of a ParametricFunction does not show the name of the parameters)
* #2604 (Slower MonteCarlo simulations for versions > 1.19)
* #2621 (TruncatedDistribution n-d CDF inversion)
* #2624 (HSICEstimatorImplementation : cannot save with pickle)
* #2627 (Weird window for NormalGamma plot in API page)
* #2628 (Multi Start have incoherent behavior if the max eval has been reached)
* #2642 (The description of a KernelSmoothing fitted distribution can be lost sometimes)
* #2647 (Contour: need to detail the norms)
* #2653 (The Faure sequence is wrong)
* #2655 (HistogramFactory struggles with samples with various scales)
* #2658 (FunctionImplementation::draw forces the location of the color bar in 2D)
* #2673 (The invariant distribution of a DiscreteMarkovChain is wrong)
== 1.22 release (2024-01-09) == #release-1.22
=== Library ===
==== Major changes ====
==== New classes ====
* BoundaryMesher (openturns.experimental)
* LatentVariableModel (openturns.experimental)
* StudentCopula (openturns.experimental)
* StudentCopulaFactory (openturns.experimental)
* TruncatedOverMesh (openturns.experimental)
* SimplicialCubature (openturns.experimental)
==== API changes ====
* Removed deprecated (Non)LinearLeastSquaresCalibration::getCandidate method
* Removed deprecated (Non)GaussianLinearCalibration::getCandidate method
* Removed deprecated DomainIntersection|Union|DisjunctiveUnion(Domain, Domain) ctors
* Removed deprecated EllipticalDistribution::getInverseCorrelation method
* Removed deprecated Basis::getDimension method
* Removed deprecated HSICStat ctors relying on weight matrix
* Deprecated Pagmo.setGenerationNumber for setMaximumIterationNumber
* Deprecated NLopt.SetSeed for setSeed
* Deprecated IterativeThresholdExceedance(dimension, threshold) ctor
* Deprecated Linear|QuadraticLeastSquares(Sample, Function) constructor
* Deprecated SubsetSampling.setKeepEventSample, getEventInputSample, getEventOutputSample
* Deprecated SubsetSampling.setISubset, setBetaMin
* QuantileMatchingFactory probabilities argument is no longer optional
* Add a new moment order argument to MethodOfMomentsFactory
* Removed Drawable.getPointCode
* Deprecated LHS in favor of ProbabilitySimulationAlgorithm+LHSExperiment
* Deprecated OptimizationAlgorithm.setVerbose/getVerbose
* Deprecated DickeyFullerTest.setVerbose/getVerbose
* Deprecated MetropolisHastings.setVerbose/getVerbose
* Deprecated BasisSequenceFactory.setVerbose/getVerbose
* Deprecated SimulationAlgorithm.setVerbose/getVerbose
* Deprecated WhittleFactory.setVerbose
* Deprecated Classifier.setVerbose/getVerbose
* Deprecated ARMAlikelihoodFactory.setVerbose/getVerbose
* Deprecated CleaningStrategy.setVerbose/getVerbose
* Deprecated ApproximationAlgorithm.setVerbose/getVerbose
* Deprecated EllipticalDistribution.setCorrelation/getCorrelation
* Deprecated EllipticalDistribution.setMean
* Student.setMu/getMu now operate on Point
* Deprecated Distribution.computeDensityGenerator methods
* Deprecated Point.clean
* Deprecated (Inverse)Gamma.setKLambda
* Deprecated Os::GetEndOfLine
* Moved PosteriorDistribution to experimental
=== Documentation ===
* Improved coverage of class/methods
* New two-degree-of-freedom oscillator use-case
=== Python module ===
* New Graph.setLegendCorner method to set legend outside of Graph
* Allowing use of matplotlib markers and legend location strings in Graphs
=== Miscellaneous ===
* Improved pretty-printing of chaos functions, distributions
* Added IterativeThresholdExceedance::getRatio
* Added FunctionalChaosResult::drawSelectionHistory to plot LARS coefs paths
* New API in SubsetSampling to get samples at each iteration
* Added SubsetSampling method to set the initial experiment
* Allowing use of non-independent copulas in LHSExperiment
* Improved system events to allow more kinds of events like DomainEvent
* Add CMake presets file
=== Bug fixes ===
* #1338 (The example in UserDefined does not show how to create a uniform discrete distribution)
* #1670 (IntervalMesher segfault when diamond==true)
* #1896 (Operator == inconsistencies)
* #1979 (The doc of KernelSmoothing has issues)
* #2195 (SubsetSampling: keep the failed and secure points at each step)
* #2216 (Characteristic function of the Triangular and Trapezoidal distributions)
* #2220 (Negative value given by the computeComplementaryCDF method)
* #2235 (Documentation is missing for some methods of class Matrix)
* #2339 (FunctionalChaosSobolIndices has doc issues)
* #2347 (Build error of /usr/include/tbb/machine/gcc_generic.h:39:20: error: operator '||' has no left operand in s390x on Fedora)
* #2351 (Import error in the draw method example)
* #2354 (IterativeThresholdExceedance)
* #2371 (t-Copula implementation)
* #2403 (KrigingAlgorithm fails if basis is empty)
* #2406 (Student does not give access to all its parameters)
* #2412 (The class QuadraticLeastSquares returns a wrong quadratic term)
* #2420 (Deprecate Os::GetEndOfLine())
* #2423 (mutable OptimizationAlgorithm)
* #2429 (Elliptical distributions)
* #2431 (LHSExperiment.generate() can fail)
* #2434 (WeibullMaxMuSigma: default values are not good)
* #2437 (Binomial computeSurvivalFunction error)
* #2439 (Use more computeScalarQuantile)
* #2442 (EGO does not handle maximization problems)
* #2443 (C++ Test SmolyakExperiment_std fails on arm64, ppc64el, s390x)
* #2452 (The LHSExperiment does not manage a non-independent copula)
* #2456 (configure fails to find bonmin)
* #2459 (Problems while configuring OpenTURNS for Visual Studio 2019)
* #2463 (Normal.computeConditionalPDF() is wrong when the components are independent)
* #2466 (PlackettCopula covariance matrix)
* #2481 (Improve SpectralGaussianProcess sampling speed)
* #2486 (DrawParallelCoordinates is not correct)
* #2487 (Cannot save large datasets using XMLH5StorageManager)
* #2503 (Using KernelSmoothing can make Jupyter Notebook to hang)
== 1.21 release (2023-06-20) == #release-1.21
=== Library ===
==== Major changes ====
* New GEV estimation services: MLE, profiled likelihood, r-maxima, time-varying, return level
==== New classes ====
* SmolyakExperiment (openturns.experimental)
* Physical|StandardSpaceCrossEntropyImportanceSampling, CrossEntropyResult (openturns.experimental)
* LeastSquaresExpansion, IntegrationExpansion (openturns.experimental)
* UniformOverMesh (openturns.experimental)
* GeneralizedExtremeValueValidation (openturns.experimental)
* Coles (openturns.usecases.coles)
* Linthurst (openturns.usescases.linthurst)
==== API changes ====
* Deprecated LinearLeastSquaresCalibration::getCandidate, use getStartingPoint
* Deprecated NonLinearLeastSquaresCalibration::getCandidate, use getStartingPoint
* Deprecated GaussianLinearCalibration::getCandidate, use getParameterMean
* Deprecated NonGaussianLinearCalibration::getCandidate, use getParameterMean
* Removed SequentialStrategy
* Removed TensorApproximationAlgorithm, TensorApproximationResult, CanonicalTensorEvaluation, CanonicalTensorGradient
* Removed FunctionalChaosSobolIndices.getSobolGrouped(Total)Index(int)
* Removed FunctionalChaosSobolIndices::summary
* Removed CorrelationAnalysis::PearsonCorrelation|SpearmanCorrelation|PCC|PRCC
* Removed Distribution.getStandardMoment
* Removed deprecated LinearModelAlgorithm | LinearModelStepwiseAlgorithm ctors
* Removed FunctionalChaosAlgorithm(Function) ctors
* Removed MetaModelResult(Function, Function, ...) ctor
* Removed FunctionalChaosResult.getComposedModel, MetaModelResult.getModel and associated attributes for 1.21
* Removed FunctionalChaosResult Function ctor
* Removed (Process)Sample::computeCenteredMoment
* Removed Distribution::getCenteredMoment
* Removed IterativeMoments::getCenteredMoments
* Removed GeneralLinearModelAlgorithm | KrigingAlgorithm ctors
* Removed Drawable.draw|clean & Graph.draw|clean|getRCommand|makeR*|GetExtensionMap methods
* Removed Sample.storeToTemporaryFile|streamToRFormat methods
* Removed GaussianProcess.GIBBS
* Deprecated DomainIntersection|Union|DisjunctiveUnion(Domain, Domain) ctors
* KrigingResult.getTrendCoefficients now returns a single Point
* GeneralLinearModelResult.getTrendCoefficients now returns a single Point
* KrigingResult.getBasisCollection was removed in favor of KrigingResult.getBasis which returns a single Basis
* GeneralLinearModelResult.getBasisCollection was removed in favor of GeneralLinearModelResult.getBasis which returns a single Basis
* Deprecated EllipticalDistribution::getInverseCorrelation
* HSICStat arguments updated (covariance matrices instead of data + covariance models)
* Deprecated HSICStat relying on weight matrix
* Deprecated Basis::getDimension, use getInputDimension instead
* Removed thinning from Gibbs and all MetropolisHastings classes
* Removed burn-in from Gibbs and all MetropolisHastings classes except RandomWalkMetropolisHastings
* RandomWalkMetropolisHastings::getRealization|Sample no longer remove states reached during burn-in
* RandomWalkMetropolisHastings default adaptation parameters were changed to enable adaptation
* Split BoxCoxFactory::build into buildWithGraph, buildWithLM, buildWithGLM
=== Documentation ===
* Add API documentation to common use cases pages
* Added new use case: Linthurst
=== Python module ===
=== Miscellaneous ===
* Add HypothesisTest::LikelihoodRatioTest for nested model selection
* Add VisualTest::DrawPPplot
* Add VisualTest.Draw(Upper|Lower)(Tail|Extremal)DependenceFunction methods to plot dependence functions
* Add Distribution.compute(Upper|Lower)(Tail|Extremal)DependenceMatrix methods to compute dependence coefficients
* Enable Pagmo.moead_gen with pagmo>=2.19
* Enable Bonmin.Ecp/iFP algorithms with bonmin>=1.8.9
* BoxCoxFactory handles linear model
=== Bug fixes ===
* #2045 ([Debian] NLopt issues during tests on arm64, ppc64el, s390x)
* #2046 ([Debian] DistFunc_binomial issues in tests on arm64 and ppc64el)
* #2047 ([Debian] pythoninstallcheck_DistributionFactory_std issues on arm64, armel, armhf, mips64el)
* #2153 (HSIC computation cost)
* #2185 (Error: no member named '__1' in namespace 'std' ARM64 Android Termux)
* #2193 (Tiny spelling issues)
* #2194 (SubsetSampling: bug in 1.15)
* #2200 (out of bound probas)
* #2204 (Build fails with primesieve-11.0)
* #2205 (Edges of a PolygonArray)
* #2206 (Only Contour legends are shown in a graph mixing Contour and other Drawable (Curve, Cloud,...))
* #2209 (The Felhberg algorithm can fail, sometimes)
* #2210 (Python Domain.getImplementation does not work)
* #2213 (Some script fails)
* #2229 (Unary minus for distribution)
* #2240 (The Viewer sometimes fail)
* #2250 (HSIC Target sensitivity bad filtering)
* #2252 (The examples of calibration are difficult to understand)
* #2255 (The description of a Distribution is wrong)
* #2268 (MeixnerDistribution: slow pdfgradient)
* #2274 (Basis accepts functions with different input (output) dimensions)
* #2281 (The marginal of FireSatelliteModel can fail)
* #2285 (The input and output descriptions does not go down to the metamodel)
* #2287 (DesignProxy.computeDesign() can produce a segmentation fault)
* #2296 (DiracCovarianceModel.discretize() is buggy)
* #2297 (Legend location with grid layout)
* #2299 (Allow openturns as subproject)
* #2306 (Dirichlet::computeConditionalPDF can produce NaNs and Infs)
* #2323 (Minor wording issues in the cross entropy importance sampling example)
* #2327 (A sign mistake in FGM document)
* #2328 (Sample.add weird behaviour)
* #2338 (HSIC with large amount of data makes crash)
== 1.20 release (2022-11-08) == #release-1.20
=== Library ===
==== New classes ====
* IndependentCopulaFactory
* FieldToPointFunctionalChaosAlgorithm (openturns.experimental)
* FieldFunctionalChaosResult (openturns.experimental)
* FieldFunctionalChaosSobolIndices (openturns.experimental)
* CorrelationAnalysis
* UserDefinedMetropolisHastings (openturns.experimental)
* QuantileMatchingFactory
* UniformMuSigma
==== API changes ====
* Removed coupling_tools.execute get_stderr,get_stdout arguments
* Removed deprecated Nlopt|Ceres|Bonmin|CMinpack|Ipopt|TBB|HMatrixFactory::IsAvailable methods
* Deprecated SequentialStrategy
* Deprecated TensorApproximationAlgorithm, TensorApproximationResult, CanonicalTensorEvaluation, CanonicalTensorGradient
* Deprecated FunctionalChaosSobolIndices.getSobolGrouped(Total)Index(int)
* Deprecated static CorrelationAnalysis::PearsonCorrelation|SpearmanCorrelation|PCC|PRCC, use the methods of the new CorrelationAnalysis class instead.
* Removed static CorrelationAnalysis::SRC|SRRC due to a bug: #1753.
* Deprecated Distribution::getStandardMoment
* Inverted ctors arguments order in LinearModelAlgorithm & LinearModelStepwiseAlgorithm : first sample, then basis
* Deprecated oldest LinearModelAlgorithm(X, basis, Y) and LinearModelStepwiseAlgorithm(X, basis, Y,...) ctors
* Deprecated FunctionalChaos(Function, ...) ctors
* Deprecated MetaModelResult(Function, Function, ...) ctor
* Deprecated FunctionalChaosResult.getComposedModel, MetaModelResult.getModel
* Deprecated FunctionalChaosResult(Function, ...) ctor
* Deprecated (Process)Sample::computeCenteredMoment in favor of computeCentralMoment
* Deprecated Distribution::getCenteredMoment in favor of getCentralMoment
* Deprecated IterativeMoments::getCenteredMoments in favor of getCentralMoments
* Deprecated GeneralLinearModelAlgorithm | KrigingAlgorithm ctors using collection of basis
* Deprecated Drawable.draw|clean & Graph.draw|clean|getRCommand methods for legacy R graphs
* Deprecated SampleImplementation.storeToTemporaryFile|streamToRFormat
* Deprecated GaussianProcess.GIBBS in favor of GaussianProcess.GALLIGAOGIBBS
* Deprecated FunctionalChaosSobolIndices::summary in favor of __str__
* Deprecated BoxCoxFactory::build method using collection of basis
=== Documentation ===
* Added example galleries at the end of API doc pages
* Added new use case: WingWeightModel and example of use
* Added new use case: FireSatelliteModel and example of use
=== Python module ===
* New openturns.experimental submodule introducing newest classes until stabilization
=== Miscellaneous ===
* Chaos for mixed variables
=== Bug fixes ===
* #1214 (There is no example with IntegrationStrategy on a database)
* #1333 (Polynomial chaos with mixed variables (improvement))
* #1473 (FunctionalChaosResult should provide the used input/output samples )
* #1568 (There is no example to bootstrap the polynomial chaos)
* #2030 (There is no example which shows how to calibrate a model without observed inputs)
* #2043 (Some attributes of PythonDistribution are changed during the lifecycle of the object)
* #2058 (TruncatedNormal failure)
* #2059 (Pb with computeConditionalPDF in KernelMixture)
* #2064 (drop getGroupedSobolIndex(int) ?)
* #2073 (getCenteredMoment(0))
* #2076 (Problem in TruncatedDistribution of discrete distributions)
* #2083 (Problem in the QQplot of a discrete distribution)
* #2088 (Why is this library overriding the SIGINT handler?)
* #2089 (Cannot load Python objects with large attributes in a Study)
* #2097 (LinearModelStepwiseAlgorithm ctor order)
* #2091 (Compressed H5 files?)
* #2094 (getSampleAtVertex() is not robust)
* #2095 (Triangular::computeCharacteristicfunction() produces NaNs)
* #2098 (LinearModelStepwiseAlgorithm null basis)
* #2101 (drop FunctionalChaosSobolIndices::summary)
* #2103 (FunctionalChaosRandomVector notes)
* #2110 (HSIC draw indices method does not handle input sample description names)
* #2115 (Add mini-galleries of examples on the API pages)
* #2121 (GaussianProcess Gibbs sampling method issues)
* #2123 (MixtureClassifier 'grade' method does not work with a Sample input)
* #2125 (SciPyDistribution __init__ failure with scipy 1.9.0)
* #2129 (get samples from Wishart distribution)
* #2139 (KarhunenLoeveSVDAlgorithm seems to truncate the expansion from v1.19)
* #2140 (GeneralizedParetoFactory.buildMethodOfMoments estimating wrong parameter)
* #2145 (Calibration wo obs input API)
* #2152 (P1LagrangeInterpolation can make Python fail)
* #2154 (SpaceFillingMinDist: LaTeX typo)
* #2157 (Slow creation of mixtures when the atom distributions are costly to copy)
* #2161 (Drop Normal SPD check)
* #2176 (Missing documentation on Kriging Result methods)
== 1.19 release (2022-05-10) == #release-1.19
=== Library ===
==== Major changes ====
* HSIC sensitivity indices
* RandomWalkMetropolisHastings now updates all components at a time, previously updated componentwise
* Iterative statistics
==== New classes ====
* RandomVectorMetropolisHastings
* IndependentMetropolisHastings
* Gibbs
* HSICEstimatorConditionalSensitivity
* HSICEstimatorGlobalSensitivity
* HSICEstimatorTargetSensitivity
* HSICUStat
* HSICVStat
* IterativeExtrema
* IterativeMoments
* IterativeThresholdExceedance
* TensorProductExperiment
* NAIS
* Pagmo
* GalambosCopula
==== API changes ====
* Removed deprecated Hanning alias
* Removed deprecated AdaptiveDirectionalSampling alias
* Removed deprecated VisualTest::DrawCobWeb method
* Removed deprecated shims module
* Removed deprecated TBB.SetNumberOfThreads/GetNumberOfThreads
* Removed deprecated MultiFORM.setMaximumNumberOfDesignPoints/getMaximumNumberOfDesignPoints
* Removed deprecated SubsetSampling.getNumberOfSteps
* coupling_tools.execute: deprecated get_stderr,get_stdout for capture_output, returns CompletedProcess
* Deprecated Nlopt|Ceres|Bonmin|CMinpack|Ipopt|TBB|HMatrixFactory::IsAvailable in favor of PlatformInfo::HasFeature, see also GetFeatures
* RandomWalkMetropolisHastings API breaks to split the likelihood definition
* Deprecated CalibrationStrategy class
=== Documentation ===
=== Python module ===
* Hide C++ getImplementation methods and add Python-specific getImplementation methods with automatic dynamic typecasting
* Add Sample.asDataFrame/BuildFromDataFrame pandas conversion methods
=== Miscellaneous ===
* Add Collection::select(Indices) method
* Parallelized SymbolicFunction evaluation (enabled from a sample size>100 with exprtk)
* Sample csv export: allow one to set precision and format
* Sample csv import: handle nan/inf values
* Add EnumerateFunction::getBasisSizeFromTotalDegree(maximumDegree)
=== Bug fixes ===
* #1260 (RandomWalkMetropolisHastings does not handle non-symmetric proposals properly)
* #1263 (Static functions are implemented in C++ classes instead of namespaces)
* #1334 (Multi-objective optimization)
* #1444 (The calibration examples are unclear)
* #1830 (Incompatible documentation for CauchyModel)
* #1914 (Cobyla & NLopt should accept LeastSquaresProblem)
* #1921 (Adaptive Directional Stratification: the coefficient of variation of the probability is inconsistent with repeated probability results)
* #1922 (Adaptive Directional Stratification: the coefficient of variation cannot be used as a stopping criterion)
* #1926 (Examples have broken graphics)
* #1931 (Interface class getImplementation methods are useless in Python)
* #1939 (Contour curves outside graph window)
* #1940 (getMaximumDegreeStrataIndex has a bug with hyperbolic rule)
* #1943 (TriangularMatrix * Point --> ScalarCollection)
* #1946 (Doc search issues)
* #1947 (The constructor of FunctionalChaosResult is undocumented)
* #1949 (The comparison operator of ComposedDistribution is wrong)
* #1958 (Performance of OrthogonalUniVariatePolynomial (precision, speed))
* #1959 (Cobyla run causes segfault when empty ctor is used)
* #1993 (IsotropicCovarianceModel has no default ctor)
* #1994 (default GaussProductExperiment is invalid)
* #1997 (KLSVD spectrum cutoff error)
* #2012 (Cannot sample a ConditionedGaussianProcess on a mesh containing conditioning points)
* #2014 (Precision issue with the Python KrigingAlgorithm test)
* #2019 (Parametric stationary covariance models doc section needs refresh)
* #2020 (Problem with the UserDefined distribution)
* #2025 (The lack of Bonmin generates an error during example compilation)
* #2031 (Multi-objective optimization example question)
* #2032 (Documentation of NAIS)
== 1.18 release (2021-11-10) == #release-1.18
=== Library ===
==== Major changes ====
==== New classes ====
* DistanceToDomainFunction
==== API changes ====
* Removed deprecated MultiStart::setStartingPoints/getStartingPoints
* Removed deprecated KarhunenLoeveResult::getEigenValues
* Removed deprecated coupling_tools.execute is_shell/workdir/shell_exe/check_exit_code arguments
* RandomVector::get/setParameter and getParameterDescription available to PythonRandomVector
* Implemented CovarianceModel::computeCrossCovariance
* Deprecated Hanning in favor of Hann
* Deprecated AdaptiveDirectionalSampling in favor of AdaptiveDirectionalStratification
* Deprecated VisualTest::DrawCobWeb in favor of DrawParallelCoordinates
* IndicatorFunction constructor takes a Domain as input
* Intervals and DomainUnions get new method computeDistanceToDomain(Point or Sample)
* Renamed some ResourceMap keys: cache-max-size>Cache-MaxSize, parallel-threads>TBB-ThreadsNumber
* Deprecated TBB.SetNumberOfThreads/GetNumberOfThreads
* Deprecated MultiFORM.setMaximumNumberOfDesignPoints/getMaximumNumberOfDesignPoints
* Deprecated SubsetSampling.getNumberOfSteps
* Normal and Student distributions: no need to specify the R parameter if it is the identity matrix
* KrigingResult::getConditionalMean and getConditionalMarginalVariance yield Samples instead of Points when applied to Samples
* Deprecated shims module
=== Documentation ===
=== Python module ===
=== Miscellaneous ===
=== Bug fixes ===
* #1840 (HMatrixFactory leaks)
* #1842 (libOT.so.0.0.0 doesn't have a SONAME)
* #1843 (Ali-Mikhail-Haq copula parameter value)
* #1844 (MaximumDistribution::computePDF is wrong when all the marginals are equal and independent)
* #1845 (MemoizeFunction does not propagate to finite difference gradient&hessian)
* #1847 (ParametricFunction require unnecessary function evaluations)
* #1854 (Sample indexing does not work on np.int64 type)
* #1856 (Speed up Normal computeSurvivalFunction)
* #1857 (ProductCovarianceModel fails when constructed with DiracCovarianceModel)
* #1858 (Normal::computeCDF(sample) crash for large dimensions)
* #1861 (Still some instabilities in Kriging with ot.StationaryFunctionalCovarianceModel)
* #1864 (FORM - IMPORTANCE FACTOR)
* #1868 (Not compatible with hmat-oss-1.7.1: no member named 'compressionMethod' in 'hmat_settings_t')
* #1870 (TruncatedDistribution fails to compute quantiles)
* #1874 (ProcessSample.getSampleAtVertex() may be useful as a public method)
* #1877 (How to model singular multivariate distributions?)
* #1878 (Rename Hanning filtering window)
* #1879 (Adaptive Directional Sampling Algorithm: the drawProbabilityConvergence graph may be wrong)
* #1880 (Adaptive Directional Sampling: some enhancements proposed)
* #1882 (Is Distribution::getLinearCorrelation useful ?)
* #1883 (Strange behavior of FORM ?)
* #1884 (setDesign can lead to wrong Sobol' indices)
* #1891 (Correlation of Halton sequence at high dimensions)
* #1911 (DirectionalSampling freezes python if not correctly initialized)
* #1912 (splitter: missing doc)
* #1915 (computePDFGradient(const Sample &) should rely on computePDFGradient(const Point &) in DistributionImplementation)
* #1918 (PythonDistribution does not allow one to overload the isDiscrete() method)
== 1.17 release (2021-05-12) == #release-1.17
=== Library ===
==== Major changes ====
==== New classes ====
* VertexValuePointToFieldFunction
* KarhunenLoeveReduction
* KarhunenLoeveValidation
* IsotropicCovarianceModel
* KroneckerCovarianceModel
* VonMisesFactory
* KFoldSplitter, LeaveOneOutSplitter
==== API changes ====
* Removed deprecated Pairs alias
* Removed deprecated SORMResult::getEventProbabilityHohenBichler/getGeneralisedReliabilityIndexHohenBichler
* Removed deprecated OptimizationResult::getLagrangeMultipliers, OptimizationAlgorithm::computeLagrangeMultipliers
* Removed deprecated FittingTest::Kolmogorov, FittingTest::BestModelKolmogorov (DistributionFactory argument only)
* Deprecated Sample::computeStandardDeviationPerComponent, use computeStandardDeviation
* Deprecated KarhunenLoeveResult::getEigenValues, use getEigenvalues
* Removed StationaryCovarianceModel
* CovarianceModel.computeAsScalar allows scalars
* Swapped SimulatedAnnealingLHS constructor SpaceFilling/TemperatureProfile arguments
* Added EfficientGlobalOptimization::getKrigingResult, gets the updated version of the KrigingResult passed to the constructor
* Deprecated MultiStart::setStartingPoints/getStartingPoints, use MultiStart::setStartingSample/getStartingSample instead
* MultiStart::setStartingPoint/getStartingPoint throws (previously did nothing)
=== Documentation ===
* Fixed example and plot of Kolmogorov statistics.
* Added a new example showing how to combine RandomWalkMetropolisHastings and PythonDistribution
=== Python module ===
* Serialize Python wrapper objects using dill (PythonDistribution, PythonFunction ...)
=== Miscellaneous ===
=== Bug fixes ===
* #1010 (The doc for ExpectationSimulationAlgorithm is confusing)
* #1052 (The Dirichlet and Normal distributions only have 1D graphics in the doc)
* #1224 (The examples in the doc of the DomainEvent class are unclear)
* #1229 (Better encapsulation of optional 3rd-party headers)
* #1240 (There is no theory documentation for ExpectationSimulationAlgorithm)
* #1257 (Cannot create a SimulatedAnnealingLHS without specifying the temperature profile)
* #1287 (The constructors of KernelSmoothing have no doc)
* #1418 (The Contour example does not present the second constructor)
* #1425 (There is no method to create a train / test pair)
* #1431 (The figure for LHSExperiment is not accurate)
* #1459 (There is no example which shows how to set a column of a Sample)
* #1497 (There is no example to create a multivariate Normal distribution)
* #1506 (The Brent class has no example)
* #1570 (Wrong formula for MauntzKucherenkoSensitivityAlgorithm)
* #1650 (There is no example of a parametric StationaryFunctionalCovarianceModel)
* #1656 (The help page of ExpectationSimulationAlgorithm is unclear)
* #1661 (XMLH5StorageManager does not store IndicesCollection into HDF5 files)
* #1662 (Operator() of a CovarianceModel with multidimensional output should yield object of type SquareMatrix)
* #1680 (QuadraticBasisFactory multiplies cross products by 2)
* #1710 (Misleading y labels in VisualTest.DrawPairsMarginals())
* #1713 (The doc of the ResourceMap does not match the content of the ResourceMap)
* #1714 (The log-PDF of the Pareto is wrong)
* #1721 (The `draw` method of `SobolSimulationAlgorithm` does not reuse the descriptions)
* #1723 (There is no interesting example of the ExprTk feature of SymbolicFunction)
* #1725 (The BetaFactory help page has wrong equations)
* #1729 (LinearModelAnalysis sometimes fail)
* #1731 (The Extreme value example may be improved)
* #1737 (Low rank tensor doc issues)
* #1742 (The example which shows how to set the figure size is wrong.)
* #1751 (DrawCorrelationCoefficients has a wrong Text height)
* #1752 (Error while estimating the reduced log-likelihood when using a StationaryFunctionalCovarianceModel)
* #1758 (The LinearModelStepwiseAlgorithm has no example)
* #1759 (Kriging model with StationaryFunctionalCovarianceModel might provide bad results)
* #1768 (Bug in ExponentiallyDampedCosineModel & SphericalModel)
* #1771 (GridLayout hides the titles in the graph)
* #1772 (MinimumVolumeClassifier cannot draw 1D samples)
* #1774 (ExponentialModel::partialGradient is wrong)
* #1775 (ExponentialModel does not account correlation with Covariance ctor)
* #1776 (Typo in the Branin use case implementation)
* #1781 (The link_to_an_external_code example has small bugs)
* #1784 (The drawPDF method of Histogram sometimes fail)
* #1787 (CovarianceMatrix from SymmetricMatrix raises InvalidArgumentException)
* #1790 (LinearModelResult.getFormula() method is not updated by Stepwise regression)
* #1794 (Some doc examples seem to behave with new infrastructure)
* #1796 (VonMisesFactory is missing)
* #1803 (The API example of Experiment has a format issue)
* #1805 (Brent's implementation has a stability issue)
* #1807 (Beta::computeCharacteristicFunction is wrong if the lower bound is not zero)
* #1815 (1.16 fails with dlib-cpp-19.22)
* #1818 (Problem with wilksNumber)
* #1820 (Incoherent results in LinearModelAnalysis)
* #1835 (RegularizedIncompleteBeta returns nan)
* #1836 (Hypergeometric results differ without boost)
* #1837 (Poor performance when using pickle on OT objects)
== 1.16 release (2020-11-16) == #release-1.16
=== Library ===
==== Major changes ====
* Drop normalization in KrigingAlgorithm
* Drop normalization & transformation handling in GeneralLinearModelAlgorithm
* XML/H5 storage (hdf5 library)
* C++11 requirement
==== New classes ====
* BlockIndependentDistribution
* FejerAlgorithm
* GridLayout
* MinimumVolumeClassifier
* StationaryFunctionalCovarianceModel
* XMLH5StorageManager
==== API changes ====
* Removed deprecated Weibull, WeibullFactory, WeibullMuSigma classes
* Removed deprecated GumbelAB class
* Removed deprecated Event class
* Removed deprecated EnumerateFunction constructors
* Removed various deprecated distribution accessors
* Deprecated Pairs class, see VisualTest.DrawPairs
* Deprecated SORMResult::getEventProbabilityHohenBichler, use SORMResult::getEventProbabilityHohenbichler instead
* Deprecated SORMResult::getGeneralisedReliabilityIndexHohenBichler, use SORMResult::getGeneralisedReliabilityIndexHohenbichler instead
* Renamed SobolSequence::MaximumNumberOfDimension as SobolSequence::MaximumDimension
* Added VisualTest::DrawLinearModel(linearModelResult), useful if the test is performed on the training samples
* Added VisualTest::DrawLinearModelResidual(linearModelResult), useful if the test is performed on the training samples
* Deprecated OptimizationResult::getLagrangeMultipliers
* Moved OptimizationAlgorithm::computeLagrangeMultipliers to OptimizationResult
* Added AIC & BestModelAIC static methods in FittingTest
* Added AICC & BestModelAICC static methods in FittingTest
* Moved BuildDistribution from FunctionalChaosAlgorithm to MetaModelAlgorithm
* Added Drawable::BuildRainbowPalette(size)
* Added Drawable::BuildTableauPalette(size), which is now the default palette.
* Added Drawable::ConvertFromRGBIntoHSV
* Added FittingTest::Lilliefors, BestModelLilliefors
* Deprecated FittingTest::BestModelKolmogorov(Sample, DistributionFactoryCollection, TestResult), use BestModelLilliefors
* Deprecated FittingTest::Kolmogorov(Sample, DistributionFactory, TestResult, level), use Lilliefors
* MetamodelValidation: now computePredictivityFactor returns Point, drawValidation return GridLayout
* Deprecated coupling_tools.execute is_shell/workdir/shell_exe/check_exit_code arguments
=== Documentation ===
* Sphinx-gallery used to render examples
==== API documentation ====
* Clarified SobolIndicesExperiment page, notations now consistent with SobolIndicesAlgorithm page
* Clarified SobolIndicesAlgorithm and (Saltellli|Martinez|MauntzKucherenko|Jansen)SensitivityAlgorithm pages, corrected formulas
* Documented how to turn warnings off or write them on a file
=== Python module ===
* Renamed Viewer *_kwargs arguments to *_kw (matplotlib convention)
* Add ProcessSample Field accessors
=== Miscellaneous ===
* Do not compute Lagrange multipliers by default during an optimization
* Add ResourceMap::FindKeys
* Allow computeLogPDF methods to output values lower than SpecFunc::LogMinScalar
=== Bug fixes ===
* #1001 (Add method SobolSimulationResult::draw)
* #1259 (The diagonal of a scatter plot matrix should have the histograms)
* #1267 (Some CSV files cannot be imported)
* #1377 (The `setKnownParameter` method is not compatible with `buildEstimator`)
* #1407 (GeneralLinearModelAlgorithm mishandles user-specified scale parameter when normalize is True)
* #1415 (The BuildDistribution static method should not use the KS-test)
* #1421 (UserDefinedStationaryCovarianceModel doc suggests input dimension can be >1)
* #1436 (The style of the curves is unpleasing to my eyes)
* #1447 (Highly inaccurate result in reliability model when using subset of RandomVector)
* #1465 (The Sample constructor based on a list and an integer should not exist)
* #1470 (setNbModes is sometimes ignored)
* #1474 (optimization defaults)
* #1507 (Leak in Collection typemaps)
* #1510 (ot.Ceres('LEVENBERG_MARQUARDT') and ot.Ceres('DOGLEG') do not handle bound constraints)
* #1515 (KernelSmoothing build failure)
* #1520 (The NLopt test is dubious)
* #1521 (Basis of MonomialFunction)
* #1529 (The error of the NonLinearLeastSquaresCalibration and GaussianNonLinearCalibration are different)
* #1540 (SubsetSampling: incorrect event sample)
* #1547 (Mesh does not check the simplices indices)
* #1549 (Doc of evaluation operator of KrigingResult)
* #1553 (Optimization algorithms ignore MaxEvaluationNumber parameter in SORM)
* #1556 (WeibullMin::computePDFGradient yields the partial derivatives in the wrong order)
* #1558 (Example estimate_multivariate_normal: FittingTest::BestModelBIC fails to compute the BIC)
* #1564 (Set a Point makes OT crash)
* #1567 (The API doc of SobolIndicesExperiment has a format issue)
* #1573 (LinearModelAnalysis::drawQQPlot line is not the first bisector)
* #1578 (Option to suppressing and/or save warnings?)
* #1581 (LinearModelAlgorithm run() fails to parse Sample description)
* #1586 (Documentation: description error in the API for the FittingTest_BestModelKolmogorov and FittingTest_BestModelChiSquaredclasses)
* #1590 (The equation of the Fejer quadrature rule is triplicated)
* #1592 (SubsetSampling returns an error if Pf=1)
* #1594 (LinearLeastSquaresCalibration and CalibrationResult)
* #1599 (FieldToPointConnection-BlockSize is missing)
* #1603 (FieldToPointConnection generates an invalid exception)
* #1605 (MaximumLikelihoodFactory cannot be used with FittingTest.Kolmogorov)
* #1624 (The graphs_loglikelihood_contour example has a bug)
* #1642 (Big white space at the beginning of examples)
* #1643 (Problem in MaximumDistribution PDF)
* #1647 (MCMC::computeLogLikelihood does not compute the log-likelihood)
* #1651 (Cobyla freezes in 0T1.16rc1)
* #1658 (TimeSeries accessor)
* #1660 (Cannot extract continuous modes from KLResult when dimension>1)
* #1668 (LevelSetMesher does not take into account the comparison operator)
== 1.15 release (2020-05-25) == #release-1.15
=== Library ===
==== Major changes ====
* New EV solver for KarhunenLoeveP1Algorithm (Spectra), with sparse matrix and HMatrix support
* Enable HMat AcaRandom compression method
==== New classes ====
* Ipopt optimization solver
==== Documentation ====
==== API changes ====
* Removed deprecated OptimizationAlgorithm::GetLeastSquaresAlgorithmNames
* Removed deprecated GaussianNonLinearCalibration,NonLinearLeastSquaresCalibration::set,getAlgorithm
* Removed deprecated MethodOfMomentsFactory::set,getOptimizationProblem
* ResourceMap::Set* methods no longer add new keys, the new Add* methods must be used instead
* Removed OPTpp
* Renamed HistogramFactory::computeSilvermanBandwidth into HistogramFactory::computeBandwidth.
=== Python module ===
* ProcessSample __getitem__ returns Sample instead of Field
* Implement list indexing
=== Miscellaneous ===
* Add Sample::getMarginal(Description)
* Fixed TBB performance when used together with OpenBLAS
=== Bug fixes ===
* #1124 (DistributionFactory::buildAsXXX methods not documented)
* #1213 (The legend of the graphics in MetaModelValidation is wrong)
* #1222 (There is no kriging example based on HMAT)
* #1331 (FittingTest_BestModelBIC sometimes fail)
* #1335 (The return of the unsafe ResourceMap)
* #1337 (The rDiscrete function has no help page)
* #1349 (Problem in the graph of Histogram)
* #1351 (Text has a zero size)
* #1354 (The doc of GeneralizedParetoFactory does not reflect the implementation)
* #1371 (Memory leak in ot.TruncatedDistribution)
* #1372 (wrap MultiStart::OptimizationResultCollection)
* #1374 (The setKnownParameter of the factories are not documented enough)
* #1376 (The View class has no example)
* #1378 (Kriging-related covariance model weirdness)
* #1383 (The ExprTk engine for SymbolicFunction does not document the "var" keyword)
* #1384 (The ExprTk engine is not case-sensitive)
* #1388 (Kolmogorov fails on a PythonDistribution)
* #1390 (The doc for the `computeQuantile` method does not describe the optional `tail` argument)
* #1393 (SobolSimulationAlgorithm should be simpler)
* #1395 (Indexing Sample improvement)
* #1403 (Python import otagrum throws an error)
* #1404 (Bug in KrigingAlgorithm+hmat-oss)
* #1405 (Most of the simulation algorithms for rare event fail on a coronavirus example)
* #1416 (MethodOfMomentsFactory has no setOptimizationBounds method)
* #1419 (BoundingVolumeHierarchy segaults/hangs)
* #1423 (The computeSilvermanBandwidth of the HistogramFactory has no help)
* #1432 (Expected improvement-based EfficientGlobalOptimization stopping criterion could be improved)
* #1437 (OrderStatisticsMarginalChecker bound message)
* #1438 (Normal distribution: computeComplementaryCDF)
* #1443 (Not all distributions have a getRoughness() method)
* #1448 (Memory consumption leads to crash)
* #1449 (P1LagrangeInterpolation sometimes fails)
* #1455 (GLM::setCovarianceModel could lead to unexpected behavior of parameter optimization in KrigingAlgorithm)
* #1456 (truncation of distribution)
* #1461 (ComparisonOperator().getImplementation().getClassName() segfault)
* #1471 (The graphics of KarhunenLoeveQuadratureAlgorithm has no axes)
* #1485 (The Normal().getRoughness() method is wrong)
* #1495 (Wrong formula for Expected Improvement evaluation)
== 1.14 release (2019-11-13) == #release-1.14
=== Library ===
==== IMPORTANT: Distributions parametrization changes ====
* New argument ordering in Frechet ctor: scale(beta), shape(alpha), location(gamma) (swapped alpha and beta)
* New parametrization in Gumbel: scale(beta), position(gamma) (beta=1/alpha for first argument)
* New parametrization in Beta: shape(alpha), shape(beta), location(a), location(b) (beta=t-r for second argument)
* New parametrization in InverseGamma: rate(lambda), shape(k) (swapped arguments)
* New parametrization in InverseNormal: location(mu), rate(lambda) (swapped arguments)
* New parametrization in Laplace: mean(mu), rate(lambda) (swapped arguments)
=> One can use "import openturns.shims as ot" to maintain compatibility with older scripts
==== Major changes ====
* New optimization solvers (Dlib, Bonmin for mixed integer optimization problems)
* New distributions (SquaredNormal, WeibullMax, Pareto, DiscreteCompoundDistribution, MixedHistogramUserDefined)
* New estimators (ParetoFactory, GeneralizedExtremeValueFactory, LeastSquaresDistributionFactory, PlackettCopulaFactory)
* New copulas (JoeCopula, MarshallOlkinCopula, PlackettCopula)
* Linear model learner (LinearModelStepwiseAlgorithm)
* System events (IntersectionEvent, UnionEvent, SystemFORM, MultiFORM)
==== New classes ====
* Dlib
* SquaredNormal
* NullHessian
* GumbelLambdaGamma
* LogNormalMuErrorFactor
* WeibullMax
* WeibullMaxFactory
* WeibullMaxMuSigma
* GeneralizedExtremeValueFactory
* Pareto
* LeastSquaresDistributionFactory
* ParetoFactory
* DiscreteCompoundDistribution
* Bonmin
* IntersectionEvent
* UnionEvent
* SystemFORM
* MultiFORM
* JoeCopula
* MarginalEvaluation/Gradient/Hessian
* MarshallOlkinCopula
* LinearModelStepwiseAlgorithm
* MixedHistogramUserDefined
* PlackettCopula
* PlackettCopulaFactory
==== API changes ====
* FittingTest methods to return fitted distributions with factory as argument
* Removed deprecated specific RandomVector constructors
* Removed deprecated HypothesisTest::Smirnov
* Removed deprecated FittingTest::TwoSamplesKolmogorov
* Removed deprecated LinearModel, LinearModelFactory
* Removed deprecated HypothesisTest::(Partial|Full)Regression
* Removed deprecated OptimizationProblem(levelFunction, levelValue) ctor
* Removed deprecated (Linear|Quadratic)(LeastSquares|Taylor)::getResponseSurface
* Removed deprecated VisualTest::DrawEmpiricalCDF,DrawHistogram,DrawClouds
* Moved dot to Point::dot
* Deprecated Weibull in favor of WeibullMin
* Deprecated WeibullMuSigma in favor of WeibullMinMuSigma
* Deprecated WeibullFactory in favor of WeibullMinFactory, buildAsWeibull
* Deprecated GumbelAB
* Deprecated GaussianNonLinearCalibration,NonLinearLeastSquaresCalibration::set,getAlgorithm
* Added getConditionalMarginalCovariance method to KrigingResult
* Added getConditionalMarginalVariance method to KrigingResult
* Deprecated OptimizationAlgorithm::GetLeastSquaresAlgorithmNames
* Added linearity features to Function
* Added 'removeKey' method to ResourceMap
* Removed Copula class
* Deprecated Event class, use ThresholdEvent/ProcessEvent/DomainEvent classes
* Deprecated EnumerateFunction constructors
* Added a minimum probability accessor to SubsetSampling
* Added a UniVariateFunction interface to solvers and integration algorithms
=== Python module ===
* Add Domain.__contains__ operator
=== Miscellaneous ===
* Add GeneralizedPareto location parameter
* Add getSobolGroupedTotalIndex method for FunctionalChaosSobolIndices for the indice of a group of variables
=== Bug fixes ===
* #997 (Adding minimum volume set examples)
* #1004 (The doc for SobolSimulationAlgorithm has issues)
* #1006 (Text drawable does not handle size)
* #1130 (Inconsistency in FittingTest)
* #1160 (2-d GaussianProcess realization graph regression)
* #1169 (Missing key in ResourceMap)
* #1173 (There is no dot product example)
* #1185 (Bug with Normal.computeMinimumLevelSet method)
* #1190 (computeProbability clamped by Domain-SmallVolume)
* #1197 (Doc error: TrendTransform)
* #1198 (Doc error: ValueFunction)
* #1202 (Sample::sort & Sample::sortAccordingToAComponent only return new Samples)
* #1204 (sortAccordingToAComponent does not check its inputs arguments)
* #1209 (LinearModelStepwiseAlgorithm from otlm does not exist in OT)
* #1216 (The CalibrationResult doc does not match the code)
* #1247 (KrigingAlgorithm could not compute amplitude analytically with ProductCovarianceModel )
* #1264 (ProductCovarianceModel ignore active parameters of its 1d marginals)
* #1282 (The dlib example fails)
* #1283 (LogNormalFactory::buildMethodOfLeastSquares has no doc)
* #1289 (The help page of PythonFunction has formatting issues)
* #1303 (Rosenblatt transformation segfault)
== 1.13 release (2019-06-06) == #release-1.13
=== Library ===
==== Major changes ====
* Added OPT++ solvers
* Improved a lot the performance of all the Rosenblatt related computations
* Added elementary calibration capabilities
* Added CMinpack, Ceres Solver least-squares solvers