-
Notifications
You must be signed in to change notification settings - Fork 1
/
balancebotsim.py
389 lines (316 loc) · 17.9 KB
/
balancebotsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from helpers import *
from sympy import *
from sympy.physics.mechanics import *
from pydy.system import System
from pydy.codegen.ode_function_generators import LambdifyODEFunctionGenerator
from scipy.integrate import odeint
import numpy.linalg
from datetime import datetime
import numpy as np
from balancebot_constants import *
# Symbols
q_sym = [] # Generalized coordinates
qd_sym = [] # Generalized coordinate derivatives
u_sym = [] # Generalized speeds
in_sym = [] # Inputs
def new_q(name, n=1):
return (new_sym(name, q_sym, n=n, dynlevel=0), new_sym(name, qd_sym, n=n, dynlevel=1))
def new_u(name, n=1):
return new_sym(name, u_sym, n, dynlevel=0)
def new_in(name, n=1):
return new_sym(name, in_sym, n, dynlevel=0)
# Define identifiers for generalized coordinates and derivatives
cart_quat, cart_quat_dot = new_q('quat', 4)
cart_pos, cart_pos_dot = new_q('pos', 3)
pole_theta, pole_theta_dot = new_q('pole_theta')
lwheel_theta, lwheel_theta_dot = new_q('lwheel_theta')
rwheel_theta, rwheel_theta_dot = new_q('rwheel_theta')
# Define identifiers for generalized speeds
cart_ang_vel = new_u('ang_vel', 3)
cart_vel = new_u('vel',3)
pole_omega = new_u('pole_omega')
lwheel_omega = new_u('lwheel_omega')
rwheel_omega = new_u('rwheel_omega')
# Define identifiers for force inputs
right_motor_torque = new_in('right_motor_torque')
left_motor_torque = new_in('left_motor_torque')
# Define newtonian reference frame and origin, gravity
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0)
gravity = g*N.z
# Define lists of kinematic equations, forces and bodies that will be appended to
kdes = []
forces = []
bodies = []
# Define cart
cart_frame = ReferenceFrame('cart_frame')
cart_frame.orient(N, 'Quaternion', cart_quat)
cart_frame.set_ang_vel(N, vector_in_frame(cart_frame, cart_ang_vel))
cart_inertia = inertia(cart_frame, cart_inertia_xx, cart_inertia_yy, cart_inertia_zz)
cart_masscenter = O.locatenew('cart_masscenter', vector_in_frame(N, cart_pos))
cart_masscenter.set_vel(N, vector_in_frame(N, cart_vel))
cart_body = RigidBody('cart', cart_masscenter, cart_frame, cart_mass, (cart_inertia, cart_masscenter))
# Add cart to eqns
forces.append((cart_masscenter, cart_mass*gravity))
kdes.append(cart_pos_dot[0]-cart_vel[0])
kdes.append(cart_pos_dot[1]-cart_vel[1])
kdes.append(cart_pos_dot[2]-cart_vel[2])
kdes.extend(kinematic_equations(cart_ang_vel, cart_quat, 'quaternion'))
bodies.append(cart_body)
# Define pole
pole_frame = ReferenceFrame('pole_frame')
pole_frame.orient(cart_frame, 'Axis', [pole_theta, cart_frame.x])
pole_inertia = inertia(pole_frame, pole_inertia_xx_yy, pole_inertia_xx_yy, pole_inertia_zz)
pole_masscenter = cart_masscenter.locatenew('pole_masscenter', -0.5*pole_length*pole_frame.z)
pole_masscenter.v2pt_theory(cart_masscenter, N, pole_frame)
pole_body = RigidBody('pole', pole_masscenter, pole_frame, pole_mass, (pole_inertia, pole_masscenter))
pole_top_point = pole_masscenter.locatenew('pole_top_point', -0.5*pole_length*pole_frame.z)
pole_top_point.v2pt_theory(pole_masscenter,N,pole_frame)
pole_top_pos = pole_top_point.pos_from(O).to_matrix(N)
pole_top_vel = pole_top_point.vel(N).to_matrix(N).subs(pole_theta_dot, pole_omega) # TODO: Why is this subs necessary?
pole_top_ground_normal_force = (-ground_contact_k*pole_top_pos[2] + -ground_contact_c*pole_top_vel[2])*contact(pole_top_pos[2], contact_smoothing_dist)
# Define battery
battery_frame = pole_frame
battery_inertia = inertia(battery_frame, battery_inertia_xx_yy, battery_inertia_xx_yy, battery_inertia_zz)
battery_masscenter = cart_masscenter.locatenew('battery_masscenter', -0.5*battery_length*battery_frame.z)
battery_masscenter.v2pt_theory(cart_masscenter,N,battery_frame)
battery_body = RigidBody('battery', battery_masscenter, battery_frame, battery_mass, (battery_inertia, battery_masscenter))
# Define payload
payload_frame = pole_frame
payload_inertia = inertia(payload_frame, payload_inertia_xx, payload_inertia_yy, payload_inertia_zz)
payload_masscenter = cart_masscenter.locatenew('payload_masscenter', -payload_position_h*payload_frame.z + payload_position_x*payload_frame.x)
payload_masscenter.v2pt_theory(cart_masscenter,N,battery_frame)
payload_body = RigidBody('payload', payload_masscenter, payload_frame, payload_mass, (payload_inertia, payload_masscenter))
# Define suspension constants
pole_suspension_m = (pole_inertia+battery_inertia+payload_inertia+inertia_of_point_mass(pole_mass, pole_masscenter.pos_from(cart_masscenter), pole_frame)+inertia_of_point_mass(battery_mass, battery_masscenter.pos_from(cart_masscenter), battery_frame)+inertia_of_point_mass(payload_mass, payload_masscenter.pos_from(cart_masscenter), payload_frame)).dot(pole_frame.x).to_matrix(pole_frame)[0]
pole_suspension_k = pole_suspension_m*(pole_suspension_freq * 2.*pi)**2
pole_suspension_c = 2.*pole_suspension_zeta*sqrt(pole_suspension_k*pole_suspension_m)
# Add pole to eqns
forces.append((pole_masscenter, pole_mass*gravity))
forces.append((pole_frame, (-pole_suspension_k*pole_theta + -pole_suspension_c*pole_omega)*pole_frame.x))
forces.append((cart_frame, -(-pole_suspension_k*pole_theta + -pole_suspension_c*pole_omega)*pole_frame.x))
forces.append((pole_top_point, N.z*pole_top_ground_normal_force))
kdes.append(pole_theta_dot-pole_omega)
bodies.append(pole_body)
# Add battery to eqns
forces.append((battery_masscenter, battery_mass*gravity))
bodies.append(battery_body)
# Add payload to eqns
forces.append((payload_masscenter, payload_mass*gravity))
bodies.append(payload_body)
# Define the ground direction vector and a wall direction vector
# This is done by subtracting the component of the N.z vector along cart_frame.y from N.z, resulting in only the component in the cart_frame x-z plane, and normalizing
ground_direction_vector = (N.z - N.z.dot(cart_frame.y)*cart_frame.y).normalize()
wall_direction_vector = (N.x - N.x.dot(cart_frame.y)*cart_frame.y).normalize()
# Define lwheel
lwheel_frame = ReferenceFrame('lwheel_frame')
lwheel_frame.orient(cart_frame, 'Axis', [lwheel_theta, cart_frame.y])
lwheel_inertia = inertia(lwheel_frame, wheel_inertia_xx_zz, wheel_inertia_yy, wheel_inertia_xx_zz)
lwheel_masscenter = cart_masscenter.locatenew('lwheel_masscenter', -0.5*wheel_base*cart_frame.y)
lwheel_masscenter.v2pt_theory(cart_masscenter, N, lwheel_frame)
lwheel_body = RigidBody('lwheel', lwheel_masscenter, lwheel_frame, wheel_mass, (lwheel_inertia, lwheel_masscenter))
# Set up lwheel contact model
lwheel_ground_contact_point = lwheel_masscenter.locatenew('lwheel_ground_contact_point', ground_direction_vector*wheel_radius)
lwheel_ground_contact_point.v2pt_theory(lwheel_masscenter,N,lwheel_frame)
lwheel_ground_contact_pos = lwheel_ground_contact_point.pos_from(O).to_matrix(N)
lwheel_ground_contact_vel = lwheel_ground_contact_point.vel(N).to_matrix(N).subs(lwheel_theta_dot, lwheel_omega) # TODO: Why is this subs necessary?
lwheel_ground_contact_force = zeros(3,1)
lwheel_ground_contact_force[2] = (-ground_contact_k*lwheel_ground_contact_pos[2] + -ground_contact_c*lwheel_ground_contact_vel[2])*contact(lwheel_ground_contact_pos[2], contact_smoothing_dist)
lwheel_ground_contact_force[0:2,0] = coulomb_friction_model(lwheel_ground_contact_vel[0:2,0].norm(), -lwheel_ground_contact_force[2], wheel_ground_mu_s, wheel_ground_mu_k, friction_smoothing_vel)*safe_normalize(lwheel_ground_contact_vel[0:2,0])
lwheel_wall_contact_point = lwheel_masscenter.locatenew('lwheel_wall_contact_point', wall_direction_vector*wheel_radius)
lwheel_wall_contact_point.v2pt_theory(lwheel_masscenter,N,lwheel_frame)
lwheel_wall_contact_pos = lwheel_wall_contact_point.pos_from(O).to_matrix(N)
lwheel_wall_contact_vel = lwheel_wall_contact_point.vel(N).to_matrix(N).subs(lwheel_theta_dot, lwheel_omega) # TODO: Why is this subs necessary?
lwheel_wall_contact_force = zeros(3,1)
lwheel_wall_contact_force[0] = (-ground_contact_k*lwheel_wall_contact_pos[0] + -ground_contact_c*lwheel_wall_contact_vel[0])*contact(lwheel_wall_contact_pos[0], contact_smoothing_dist)
lwheel_wall_contact_force[1:3,0] = coulomb_friction_model(lwheel_wall_contact_vel[1:3,0].norm(), -lwheel_wall_contact_force[0], wheel_ground_mu_s, wheel_ground_mu_k, friction_smoothing_vel)*safe_normalize(lwheel_wall_contact_vel[1:3,0])
# Add lwheel to eqns
forces.append((lwheel_masscenter, wheel_mass*gravity))
forces.append((lwheel_ground_contact_point, vector_in_frame(N, lwheel_ground_contact_force)))
forces.append((lwheel_wall_contact_point, vector_in_frame(N, lwheel_wall_contact_force)))
forces.append((lwheel_frame, left_motor_torque*lwheel_frame.y))
forces.append((cart_frame, -left_motor_torque*lwheel_frame.y))
kdes.append(lwheel_theta_dot-lwheel_omega)
bodies.append(lwheel_body)
# Define rwheel
rwheel_frame = ReferenceFrame('rwheel_frame')
rwheel_frame.orient(cart_frame, 'Axis', [rwheel_theta, cart_frame.y])
rwheel_inertia = inertia(rwheel_frame, wheel_inertia_xx_zz, wheel_inertia_yy, wheel_inertia_xx_zz)
rwheel_masscenter = cart_masscenter.locatenew('rwheel_masscenter', 0.5*wheel_base*cart_frame.y)
rwheel_masscenter.v2pt_theory(cart_masscenter, N, rwheel_frame)
rwheel_body = RigidBody('rwheel', rwheel_masscenter, rwheel_frame, wheel_mass, (rwheel_inertia, rwheel_masscenter))
# Set up rwheel contact model
rwheel_ground_contact_point = rwheel_masscenter.locatenew('rwheel_ground_contact_point', ground_direction_vector*wheel_radius)
rwheel_ground_contact_point.v2pt_theory(rwheel_masscenter,N,rwheel_frame)
rwheel_ground_contact_pos = rwheel_ground_contact_point.pos_from(O).to_matrix(N)
rwheel_ground_contact_vel = rwheel_ground_contact_point.vel(N).to_matrix(N).subs(rwheel_theta_dot, rwheel_omega) # TODO: Why is this subs necessary?
rwheel_ground_contact_force = zeros(3,1)
rwheel_ground_contact_force[2] = (-ground_contact_k*rwheel_ground_contact_pos[2] + -ground_contact_c*rwheel_ground_contact_vel[2])*contact(rwheel_ground_contact_pos[2], contact_smoothing_dist)
rwheel_ground_contact_force[0:2,0] = coulomb_friction_model(rwheel_ground_contact_vel[0:2,0].norm(), -rwheel_ground_contact_force[2], wheel_ground_mu_s, wheel_ground_mu_k, friction_smoothing_vel)*safe_normalize(rwheel_ground_contact_vel[0:2,0])
rwheel_wall_contact_point = rwheel_masscenter.locatenew('rwheel_wall_contact_point', wall_direction_vector*wheel_radius)
rwheel_wall_contact_point.v2pt_theory(rwheel_masscenter,N,rwheel_frame)
rwheel_wall_contact_pos = rwheel_wall_contact_point.pos_from(O).to_matrix(N)
rwheel_wall_contact_vel = rwheel_wall_contact_point.vel(N).to_matrix(N).subs(rwheel_theta_dot, rwheel_omega) # TODO: Why is this subs necessary?
rwheel_wall_contact_force = zeros(3,1)
rwheel_wall_contact_force[0] = (-ground_contact_k*rwheel_wall_contact_pos[0] + -ground_contact_c*rwheel_wall_contact_vel[0])*contact(rwheel_wall_contact_pos[0], contact_smoothing_dist)
rwheel_wall_contact_force[1:3,0] = coulomb_friction_model(rwheel_wall_contact_vel[1:3,0].norm(), -rwheel_wall_contact_force[0], wheel_ground_mu_s, wheel_ground_mu_k, friction_smoothing_vel)*safe_normalize(rwheel_wall_contact_vel[1:3,0])
# Add rwheel to eqns
forces.append((rwheel_masscenter, wheel_mass*gravity))
forces.append((rwheel_ground_contact_point, vector_in_frame(N, rwheel_ground_contact_force)))
forces.append((rwheel_wall_contact_point, vector_in_frame(N, rwheel_wall_contact_force)))
forces.append((rwheel_frame, right_motor_torque*rwheel_frame.y))
forces.append((cart_frame, -right_motor_torque*rwheel_frame.y))
kdes.append(rwheel_theta_dot-rwheel_omega)
bodies.append(rwheel_body)
KM = KanesMethod(N, q_ind=q_sym, u_ind=u_sym, kd_eqs=kdes)
KM.kanes_equations(forces, bodies)
#kdd = KM.kindiffdict()
#mm = KM.mass_matrix_full
#fo = KM.forcing_full
#mm, fo, subx = extractSubexpressions([mm, fo], 'subx')
#eom = mm.LUsolve(fo)
#eom, subx = extractSubexpressions([eom], 'subx', prev_subx=subx)
#output = {'eom': {'subx': subx, 'param': Matrix(q_sym+u_sym+in_sym), 'ret': eom}}
#for b in bodies:
#output[str(b)+'_masscenter_pos'] = {'param': Matrix(q_sym+u_sym), 'ret': simplify(b.masscenter.pos_from(O).to_matrix(N))}
#output[str(b)+'_masscenter_vel'] = {'param': Matrix(q_sym+u_sym), 'ret': simplify(b.masscenter.vel(N).to_matrix(N))}
#output[str(b)+'_rot_body_to_newtonian'] = {'param': Matrix(q_sym+u_sym), 'ret': simplify(N.dcm(b.frame))}
#with open('dyn.srepr', 'w') as f:
#f.truncate()
#f.write(srepr(output))
#pprint(q_sym+u_sym)
Vlim = 33.6
Km = .308
R = 10.
kP = 200.
kD = 2.
def t_l(x,t):
Vemf = Km*x[17]
pos_torque_limit = Km*(Vlim-Vemf)/R
neg_torque_limit = Km*(-Vlim-Vemf)/R
pitch_angle = quat_321_pitch(x[0:4])
pitch_rate = x[11]
ret = min(max(pitch_angle*kP+pitch_rate*kD, neg_torque_limit), pos_torque_limit)
return ret
def t_r(x,t):
Vemf = Km*x[18]
pos_torque_limit = Km*(Vlim-Vemf)/R
neg_torque_limit = Km*(-Vlim-Vemf)/R
pitch_angle = quat_321_pitch(x[0:4])
pitch_rate = x[11]
ret = min(max(pitch_angle*kP+pitch_rate*kD, neg_torque_limit), pos_torque_limit)
return ret
bb_sys = System(KM)
forward_vel = 0.
bb_sys.initial_conditions = {
cart_quat[0]: 1.,
cart_quat[1]: 0.,
cart_quat[2]: 0.,
cart_quat[3]: 0.,
cart_ang_vel[0]:0.2,
cart_ang_vel[1]:0.,
cart_ang_vel[2]:0.,
cart_pos[0]: -0.5,
cart_pos[2]: -0.09089599-3.,
cart_vel[0]: forward_vel,
cart_vel[1]: 0.5,
cart_vel[2]: 0.,
pole_theta: 0.,
pole_omega: 0.,
lwheel_omega: -forward_vel/wheel_radius,
rwheel_omega: -forward_vel/wheel_radius,
}
bb_sys.specifieds = {
left_motor_torque: t_l,
right_motor_torque: t_r,
}
bb_sys.generate_ode_function(generator='cython')
dyn = bb_sys.evaluate_ode_function
x0 = bb_sys._initial_conditions_padded_with_defaults()
x0 = [x0[k] for k in bb_sys.states]
get_cart_pos = lambdify([q_sym+u_sym], (cart_masscenter.pos_from(O)-0.5*(wheel_base-0.03)*cart_frame.y).to_matrix(N))
get_cart_axis = lambdify([q_sym+u_sym], ((wheel_base-0.03)*cart_frame.y).to_matrix(N))
get_cart_up = lambdify([q_sym+u_sym], cart_frame.z.to_matrix(N))
get_pole_pos = lambdify([q_sym+u_sym], (pole_masscenter.pos_from(O)-0.5*pole_length*pole_frame.z).to_matrix(N))
get_pole_axis = lambdify([q_sym+u_sym], (pole_length*pole_frame.z).to_matrix(N))
get_pole_up = lambdify([q_sym+u_sym], pole_frame.x.to_matrix(N))
get_payload_pos = lambdify([q_sym+u_sym], (payload_masscenter.pos_from(O)).to_matrix(N))
get_payload_axis = lambdify([q_sym+u_sym], (payload_frame.z*payload_height).to_matrix(N))
get_payload_up = lambdify([q_sym+u_sym], payload_frame.x.to_matrix(N))
get_lwheel_pos = lambdify([q_sym+u_sym], (lwheel_masscenter.pos_from(O)-0.5*.02*cart_frame.y).to_matrix(N))
get_lwheel_axis = lambdify([q_sym+u_sym], (.02*cart_frame.y).to_matrix(N))
get_lwheel_up = lambdify([q_sym+u_sym], lwheel_frame.z.to_matrix(N))
get_rwheel_pos = lambdify([q_sym+u_sym], (rwheel_masscenter.pos_from(O)-0.5*.02*cart_frame.y).to_matrix(N))
get_rwheel_axis = lambdify([q_sym+u_sym], (.02*cart_frame.y).to_matrix(N))
get_rwheel_up = lambdify([q_sym+u_sym], rwheel_frame.z.to_matrix(N))
from multiprocessing import Process, Queue
from visual import *
from time import sleep
framerate = 30
speedup = 1.
def vis_proc(q):
def vpy(v):
return vector(v[1], -v[2], -v[0])
scene = display(width=1920, height=1200, background=color.black, ambient=color.white)
scene.autoscale = scene.autocenter = False
scene.range = 1.62
theta = radians(30.)
scene.forward=vpy((cos(theta),0.,sin(theta)))
floor = cylinder(pos=(0,0,0), axis=vpy((0.,0.,0.1)), material=materials.wood, color=(0.,.5,0.), radius=25.)
x = q.get()
scene.center = vpy(get_pole_pos(x)+get_pole_axis(x)*0.75)
cart = cylinder(pos=vpy(get_cart_pos(x)), axis=vpy(get_cart_axis(x)), up=vpy(get_cart_up(x)), radius=cart_radius, material=materials.wood, color=color.gray(0.15))
lwheel = cylinder(pos=vpy(get_lwheel_pos(x)), axis=vpy(get_lwheel_axis(x)), up=vpy(get_lwheel_up(x)), radius=wheel_radius, material=materials.wood, color=color.gray(0.15))
rwheel = cylinder(pos=vpy(get_rwheel_pos(x)), axis=vpy(get_rwheel_axis(x)), up=vpy(get_lwheel_up(x)), radius=wheel_radius, material=materials.wood, color=color.gray(0.15))
pole = cylinder(pos=vpy(get_pole_pos(x)), axis=vpy(get_pole_axis(x)), up=vpy(get_pole_up(x)), radius=pole_radius, material=materials.wood, color=color.gray(0.2))
payload = box(pos=vpy(get_payload_pos(x)), axis=vpy(get_payload_axis(x)), up=vpy(get_payload_up(x)), length=payload_height, width=payload_width, height=payload_thickness, material=materials.wood, color=color.gray(0.1))
wall = box(pos=vpy((0.05,0,-.1)), height=.2, width=5., axis=vpy((.1,0,0)), material=materials.wood)
sleep(1)
while(True):
rate(framerate)
x = q.get()
cart.pos = vpy(get_cart_pos(x))
cart.axis = vpy(get_cart_axis(x))
cart.up = vpy(get_cart_up(x))
lwheel.pos = vpy(get_lwheel_pos(x))
lwheel.axis = vpy(get_lwheel_axis(x))
lwheel.up = vpy(get_lwheel_up(x))
rwheel.pos = vpy(get_rwheel_pos(x))
rwheel.axis = vpy(get_rwheel_axis(x))
rwheel.up = vpy(get_rwheel_up(x))
pole.pos = vpy(get_pole_pos(x))
pole.axis = vpy(get_pole_axis(x))
pole.up = vpy(get_pole_up(x))
payload.pos = vpy(get_payload_pos(x))
payload.axis = vpy(get_payload_axis(x))
payload.up = vpy(get_payload_up(x))
scene.center = vpy(get_pole_pos(x)+get_pole_axis(x)*0.75)
if __name__ == '__main__':
import signal
import sys
from Queue import Full
q = Queue(30)
p = Process(target=vis_proc, args=(q,))
t = 0.
dt = speedup/framerate
x = x0
q.put(x)
p.start()
def signal_handler(signal, frame):
p.terminate()
sys.exit(0)
signal.signal(signal.SIGINT, signal_handler)
while(True):
times = np.linspace(t,t+dt,2)
x = odeint(dyn,x,times,(bb_sys._specifieds_padded_with_defaults(), bb_sys._constants_padded_with_defaults()), rtol=1e-2, atol=1e-4)[-1]
t = times[-1]
while True:
try:
if not p.is_alive():
p.terminate()
sys.exit(0)
q.put(x, timeout = 0.1)
break
except Full:
continue