-
Notifications
You must be signed in to change notification settings - Fork 7
/
thresholding.py
350 lines (273 loc) · 13 KB
/
thresholding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import time
import cv2
import pytesseract
import numpy as np
# SmashScan Libraries
import util
# Refer to OpenCV documentation:
# https://docs.opencv.org/3.4.5/da/d97/tutorial_threshold_inRange.html
# https://docs.opencv.org/3.4.5/de/d25/imgproc_color_conversions.html
# https://docs.opencv.org/3.4/da/d6a/tutorial_trackbar.html
# https://docs.opencv.org/3.4.5/da/d97/tutorial_threshold_inRange.html
# An object that creates a parameter analyzer window for HSV ranges, and two
# separate windows that displays the results of the trackbar ranges.
class HsvParamAnalyzer:
def __init__(self, video_location, start_fnum=0, stop_fnum=0):
self.capture = cv2.VideoCapture(video_location)
self.start_fnum = start_fnum
self.stop_fnum = stop_fnum
if stop_fnum == 0:
self.stop_fnum = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT))
self.window_name = 'Object Detection'
self.low_H_name = 'Low H'
self.low_S_name = 'Low S'
self.low_V_name = 'Low V'
self.high_H_name = 'High H'
self.high_S_name = 'High S'
self.high_V_name = 'High V'
self.low_H, self.low_S, self.low_V = 0, 0, 0
self.high_H, self.high_S, self.high_V = 180, 255, 255
cv2.namedWindow(self.window_name)
cv2.createTrackbar(self.low_H_name, self.window_name,
self.low_H, 180, self.on_low_H_thresh_trackbar)
cv2.createTrackbar(self.high_H_name, self.window_name,
self.high_H, 180, self.on_high_H_thresh_trackbar)
cv2.createTrackbar(self.low_S_name, self.window_name,
self.low_S, 255, self.on_low_S_thresh_trackbar)
cv2.createTrackbar(self.high_S_name, self.window_name,
self.high_S, 255, self.on_high_S_thresh_trackbar)
cv2.createTrackbar(self.low_V_name, self.window_name,
self.low_V, 255, self.on_low_V_thresh_trackbar)
cv2.createTrackbar(self.high_V_name, self.window_name,
self.high_V, 255, self.on_high_V_thresh_trackbar)
# The standard test iterates through the entire video with multiple track
# bars to vary HSV thresholds. Results can be seen in a separate window.
def standard_test(self):
for fnum in range(self.start_fnum, self.stop_fnum):
frame = util.get_frame(self.capture, fnum)
frame = frame[280:, :]
frame_HSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(frame_HSV, (self.low_H, self.low_S, self.low_V),
(self.high_H, self.high_S, self.high_V))
res = cv2.bitwise_and(frame, frame, mask=mask)
res_inv = cv2.bitwise_and(frame, frame, mask=cv2.bitwise_not(mask))
cv2.imshow(self.window_name, mask)
cv2.imshow('Video Capture AND', res)
cv2.imshow('Video Capture INV', res_inv)
if cv2.waitKey(30) & 0xFF == ord('q'):
break
# A number of methods corresponding to the various trackbars available.
def on_low_H_thresh_trackbar(self, val):
self.low_H = val
self.low_H = min(self.high_H-1, self.low_H)
cv2.setTrackbarPos(self.low_H_name, self.window_name, self.low_H)
def on_high_H_thresh_trackbar(self, val):
self.high_H = val
self.high_H = max(self.high_H, self.low_H+1)
cv2.setTrackbarPos(self.high_H_name, self.window_name, self.high_H)
def on_low_S_thresh_trackbar(self, val):
self.low_S = val
self.low_S = min(self.high_S-1, self.low_S)
cv2.setTrackbarPos(self.low_S_name, self.window_name, self.low_S)
def on_high_S_thresh_trackbar(self, val):
self.high_S = val
self.high_S = max(self.high_S, self.low_S+1)
cv2.setTrackbarPos(self.high_S_name, self.window_name, self.high_S)
def on_low_V_thresh_trackbar(self, val):
self.low_V = val
self.low_V = min(self.high_V-1, self.low_V)
cv2.setTrackbarPos(self.low_V_name, self.window_name, self.low_V)
def on_high_V_thresh_trackbar(self, val):
self.high_V = val
self.high_V = max(self.high_V, self.low_V+1)
cv2.setTrackbarPos(self.high_V_name, self.window_name, self.high_V)
# An object that creates a parameter analyzer window for damage OCR.
class DmgParamAnalyzer:
def __init__(self, video_location, start_fnum=0, stop_fnum=0):
self.capture = cv2.VideoCapture(video_location)
self.capture.set(cv2.CAP_PROP_POS_FRAMES, start_fnum)
self.window_name = "Damage Parameter Analyzer"
self.start_fnum = start_fnum
self.stop_fnum = stop_fnum
if stop_fnum == 0:
self.stop_fnum = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT))
cv2.namedWindow(self.window_name)
cv2.createTrackbar("Step Size", self.window_name,
1, 100, self.on_step_trackbar)
cv2.createTrackbar("Delay", self.window_name,
10, 500, self.on_delay_trackbar)
cv2.createTrackbar("Thresh ~ Bin, Otsu", self.window_name,
0, 1, self.on_thresh_trackbar)
cv2.createTrackbar("Pre Blur ~ 0, Gaus, Med", self.window_name,
0, 2, self.on_pre_blur_trackbar)
cv2.createTrackbar("Post Blur ~ 0, Med", self.window_name,
0, 1, self.on_post_blur_trackbar)
cv2.createTrackbar("Contour Filter ~ Off, On", self.window_name,
0, 1, self.on_contour_trackbar)
cv2.createTrackbar("Contour Display ~ Off, On", self.window_name,
0, 1, self.on_contour_disp_trackbar)
cv2.createTrackbar("Contour Min Area", self.window_name,
1, 1000, self.on_contour_min_area_trackbar)
cv2.createTrackbar("Contour Max Area", self.window_name,
5000, 5000, self.on_contour_max_area_trackbar)
cv2.createTrackbar("OCR ~ Off, On", self.window_name,
0, 1, self.on_ocr_trackbar)
cv2.createTrackbar("OCR ~ 1 Line, 1 Word", self.window_name,
0, 1, self.on_ocr_mode_trackbar)
self.step_size = 1
self.step_delay = 10
self.pre_blur_val = 0
self.thresh_flag = False
self.post_blur_val = 0
self.contour_flag = False
self.contour_disp_flag = False
self.contour_min_area = 1
self.contour_max_area = 5000
self.ocr_flag = False
self.ocr_mode_flag = False
# The method that must be called to boot up the paramater analysis GUI.
def standard_test(self):
fnum = self.start_fnum
time_queue = list()
disp_dict = dict()
while fnum < self.stop_fnum:
start_time = time.time()
fnum += self.step_size
frame = util.get_frame(self.capture, fnum, gray_flag=True)
frame = frame[300:340, 80:220] # 300:340, 200:320
frame = self.param_filter(frame)
if self.contour_flag:
frame = self.contour_filter(frame)
if self.ocr_flag:
conf_text = "--psm 7" # Single test line mode.
if self.ocr_mode_flag: # Single word mode.
conf_text = "--psm 8"
text = pytesseract.image_to_string(cv2.bitwise_not(frame),
lang="eng", config=conf_text)
disp_dict["OCR"] = text
util.display_pa_fps(start_time, time_queue, disp_dict)
cv2.imshow(self.window_name, frame)
if cv2.waitKey(self.step_delay) & 0xFF == ord('q'):
break
# Apply filters to frame according to GUI parameters.
def param_filter(self, frame):
# Apply pre-blur according to trackbar value.
if self.pre_blur_val == 1:
frame = cv2.GaussianBlur(frame, (5, 5), 0)
elif self.pre_blur_val == 2:
frame = cv2.medianBlur(frame, 5)
# Apply a thresholding method according to trackbar value.
if self.thresh_flag:
_, frame = cv2.threshold(frame, 127, 255, cv2.THRESH_BINARY)
else:
_, frame = cv2.threshold(frame, 127, 255, cv2.THRESH_OTSU)
# Apply post-blur according to trackbar value.
if self.post_blur_val:
frame = cv2.medianBlur(frame, 5)
return frame
# Apply filterrs to frame according to contour parameters.
def contour_filter(self, frame):
_, contours, _ = cv2.findContours(frame,
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
new_frame = np.zeros(frame.shape, np.uint8)
for i, contour in enumerate(contours):
c_area = cv2.contourArea(contour)
if self.contour_min_area <= c_area <= self.contour_max_area:
mask = np.zeros(frame.shape, np.uint8)
cv2.drawContours(mask, contours, i, 255, cv2.FILLED)
mask = cv2.bitwise_and(frame, mask)
new_frame = cv2.bitwise_or(new_frame, mask)
frame = new_frame
if self.contour_disp_flag:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)
cv2.drawContours(frame, contours, -1, (255, 0, 0), 1)
return frame
# A number of methods corresponding to the various trackbars available.
def on_step_trackbar(self, val):
self.step_size = val
def on_delay_trackbar(self, val):
self.step_delay = val
def on_thresh_trackbar(self, val):
self.thresh_flag = val
def on_pre_blur_trackbar(self, val):
self.pre_blur_val = val
def on_post_blur_trackbar(self, val):
self.post_blur_val = val
def on_contour_trackbar(self, val):
self.contour_flag = val
def on_contour_disp_trackbar(self, val):
self.contour_disp_flag = val
def on_contour_min_area_trackbar(self, val):
self.contour_min_area = val
def on_contour_max_area_trackbar(self, val):
self.contour_max_area = val
def on_ocr_trackbar(self, val):
self.ocr_flag = val
def on_ocr_mode_trackbar(self, val):
self.ocr_mode_flag = val
# An object that creates a parameter analyzer for damage template matching.
class DmgTmParamAnalyzer:
def __init__(self, video_location, start_fnum=0, stop_fnum=0):
self.capture = cv2.VideoCapture(video_location)
self.capture.set(cv2.CAP_PROP_POS_FRAMES, start_fnum)
self.window_name = "Damage TM Parameter Analyzer"
self.start_fnum = start_fnum
self.stop_fnum = stop_fnum
if stop_fnum == 0:
self.stop_fnum = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT))
cv2.namedWindow(self.window_name)
cv2.createTrackbar("Step Size", self.window_name,
1, 100, self.on_step_trackbar)
cv2.createTrackbar("Delay", self.window_name,
10, 500, self.on_delay_trackbar)
cv2.createTrackbar("TM ~ Off, On", self.window_name,
0, 1, self.on_tm_trackbar)
self.step_size = 1
self.step_delay = 10
self.tm_flag = False
# Read all ten of the damage integer images and extract a binary mask
# based off of the alpha channel. Also, resize to a 360p height.
self.orig_num_img, self.orig_num_mask = [None]*10, [None]*10
self.num_img, self.num_mask = [None]*10, [None]*10
for i in range(0, 10):
self.orig_num_img[i], self.orig_num_mask[i] = util.get_image_and_mask(
"resources/{:}.png".format(i), gray_flag=True)
self.num_img[i] = util.resize_img(self.orig_num_img[i], 360/480)
self.num_mask[i] = util.resize_img(self.orig_num_mask[i], 360/480)
self.num_h, self.num_w = self.num_img[0].shape[:2]
# The method that must be called to boot up the paramater analysis GUI.
def standard_test(self):
fnum = self.start_fnum
time_queue = list()
disp_dict = dict()
while fnum < self.stop_fnum:
start_time = time.time()
fnum += self.step_size
frame = util.get_frame(self.capture, fnum, gray_flag=True)
frame = frame[300:340, 80:220] # 300:340, 200:320
if self.tm_flag:
self.match_dmg_templates(frame)
util.display_pa_fps(start_time, time_queue, disp_dict)
cv2.imshow(self.window_name, frame)
if cv2.waitKey(self.step_delay) & 0xFF == ord('q'):
break
# Perform template matching for all ten damage integers.
def match_dmg_templates(self, frame):
match_mat, max_val, tl = [None]*10, [0]*10, [(0, 0)]*10
for i in range(0, 10):
match_mat[i] = cv2.matchTemplate(frame, self.num_img[0],
cv2.TM_CCORR_NORMED, mask=self.num_mask[0])
_, max_val[i], _, tl[i] = cv2.minMaxLoc(match_mat[i])
# print(max_val[0])
br = (tl[0][0] + self.num_w, tl[0][1] + self.num_h)
frame = cv2.rectangle(frame, tl[0], br, (255, 255, 255), 2)
# Multi-template result searching
# _, max_val_1, _, tl_1 = cv2.minMaxLoc(np.array(match_mat))
# print(tl_1)
# A number of methods corresponding to the various trackbars available.
def on_step_trackbar(self, val):
self.step_size = val
def on_delay_trackbar(self, val):
self.step_delay = val
def on_tm_trackbar(self, val):
self.tm_flag = val