-
Notifications
You must be signed in to change notification settings - Fork 31
/
explorefault.py
518 lines (404 loc) · 15.9 KB
/
explorefault.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
'''
A class that searches for the best fault to fit some geodetic data.
This class is made for a simple planar fault geometry.
It is close to what R. Grandin has implemented but with a MCMC approach
Grandin's approach will be coded in another class.
Author:
R. Jolivet 2017
'''
# Externals
import sys, os, copy
import numpy as np
import matplotlib.pyplot as plt
# PyMC
try:
import pymc3
except:
pass
# Personals
from .SourceInv import SourceInv
from .planarfault import planarfault
# Class explorefault
class explorefault(SourceInv):
'''
Creates an object that will solve for the best fault details. The fault has only one patch and is embedded in an elastic medium.
Args:
* name : Name of the object
Kwargs:
* utmzone : UTM zone number
* ellps : Ellipsoid
* lon0/lat0 : Refernece of the zone
* verbose : Talk to me
Returns:
* None
'''
def __init__(self, name, utmzone=None,
ellps='WGS84', lon0=None, lat0=None,
verbose=True):
# Initialize the fault
if verbose:
print ("---------------------------------")
print ("---------------------------------")
print ("Initializing fault exploration {}".format(name))
self.verbose = verbose
# Base class init
super(explorefault,self).__init__(name, utmzone=utmzone,
ellps=ellps,
lon0=lon0, lat0=lat0)
# Keys to look for
self.keys = ['lon', 'lat', 'depth', 'dip',
'width', 'length', 'strike',
'strikeslip', 'dipslip']
# Initialize the fault object
self.fault = planarfault('mcmc fault', utmzone=self.utmzone,
lon0=self.lon0,
lat0=self.lat0,
ellps=self.ellps,
verbose=False)
# All done
return
def setPriors(self, bounds, datas=None, initialSample=None):
'''
Initializes the prior likelihood functions.
Args:
* bounds : Bounds is a dictionary that holds the following keys.
- 'lon' : Longitude (tuple or float)
- 'lat' : Latitude (tuple or float)
- 'depth' : Depth in km of the top of the fault (tuple or float)
- 'dip' : Dip in degree (tuple or float)
- 'width' : Along-dip size in km (tuple or float)
- 'length' : Along-strike length in km (tuple or float)
- 'strike' : Azimuth of the strike (tuple or float)
- 'strikeslip' : Strike Slip (tuple or float)
- 'dipslip' : Dip slip (tuple or float)
One bound should be a list with the name of a pymc distribution as first element. The following elements will be passed on to the function.
example: bounds[0] = ('Normal', 0., 2.) will give a Normal distribution centered on 0. with a 2. standard deviation.
Kwargs:
* datas : Data sets that will be used. This is in case bounds has tuples or floats for reference of an InSAR data set
* initialSample : An array the size of the list of bounds default is None and will be randomly set from the prior PDFs
Returns:
* None
'''
# Make a list of priors
if not hasattr(self, 'Priors'):
self.Priors = []
# Check initialSample
if initialSample is None:
initialSample = {}
else:
assert len(initialSample)==len(bounds), \
'Inconsistent size for initialSample: {}'.format(len(initialSample))
initSampleVec = []
# What do we sample?
self.sampledKeys = {}
isample = 0
# Iterate over the keys
for key in self.keys:
# Check the key has been provided
assert key in bounds, '{} not defined in the input dictionary'
# Get the values
bound = bounds[key]
# Get the function type
assert type(bound[0]) is str, 'First element of a bound must be a string'
function = getattr(pymc, bound[0])
# Get arguments and create the prior
args = [key] + bound[1:]
pm = function(*args)
# Initial Sample
if len(initialSample)<len(bounds):
initialSample[key] = pm.rand()
# Save it
if bound[0]!='Degenerate':
self.Priors.append(pm)
initSampleVec.append(initialSample[key])
self.sampledKeys[key] = isample
isample += 1
# Create a prior for the data set reference term
# Works only for InSAR data yet
if datas is not None:
# Check
if type(datas) is not list:
datas = [datas]
# Iterate over the data
for data in datas:
# Get it
assert data.name in bounds, \
'No bounds provided for prior for data {}'.format(data.name)
bound = bounds[data.name]
key = '{}'.format(data.name)
# Get function
function = getattr(pymc, bound[0])
# Create prior
args = [key] + bound[1:]
pm = function(*args)
# Initial Sample
if len(initialSample)<len(bounds):
initialSample[key] = pm.rand()
# Store it
if bound[0]!='Degenerate':
self.Priors.append(pm)
initSampleVec.append(initialSample[key])
self.sampledKeys[key] = isample
isample += 1
self.keys.append(key)
data.refnumber = len(self.Priors)-1
# Save initial sample
self.initSampleVec = initSampleVec
self.initialSample = initialSample
# All done
return
def setLikelihood(self, datas, vertical=True):
'''
Builds the data likelihood object from the list of geodetic data in datas.
Args:
* datas : csi geodetic data object (gps or insar) or list of csi geodetic objects. TODO: Add other types of data (opticorr)
Kwargs:
* vertical : Use the verticals for GPS?
Returns:
* None
'''
# Build the prediction method
# Initialize the object
if type(datas) is not list:
self.datas = [datas]
# List of likelihoods
self.Likelihoods = []
# Create a likelihood function for each of the data set
for data in self.datas:
# Get the data type
if data.dtype=='gps':
# Get data
if vertical:
dobs = data.vel_enu.flatten()
else:
dobs = data.vel_enu[:,:-1].flatten()
elif data.dtype=='insar':
# Get data
dobs = data.vel
# Make sure Cd exists
assert hasattr(data, 'Cd'), \
'No data covariance for data set {}'.format(data.name)
Cd = data.Cd
# Save the likelihood function
self.Likelihoods.append([data, dobs, Cd, vertical])
# All done
return
# Define a function
def Predict(self, theta, data, vertical=True):
'''
Calculates a prediction of the measurement from the theta vector
Args:
* theta : model parameters [lon, lat, depth, dip, width, length, strike, strikeslip, dipslip]
* data : Data to test upon
Kwargs:
* vertical : True/False
Returns:
* None
'''
# Take the values in theta and distribute
lon = self._getFromTheta(theta, 'lon')
lat = self._getFromTheta(theta, 'lat')
depth = self._getFromTheta(theta, 'depth')
dip = self._getFromTheta(theta, 'dip')
width = self._getFromTheta(theta, 'width')
length = self._getFromTheta(theta, 'length')
strike = self._getFromTheta(theta, 'strike')
strikeslip = self._getFromTheta(theta, 'strikeslip')
dipslip = self._getFromTheta(theta, 'dipslip')
if hasattr(data, 'refnumber'):
reference = theta[data.refnumber]
else:
reference = 0.
# Get the fault
fault = self.fault
# Build a planar fault
fault.buildPatches(lon, lat, depth, strike, dip,
length, width, 1, 1, verbose=False)
# Build the green's functions
fault.buildGFs(data, vertical=vertical, slipdir='sd', verbose=False)
# Set slip
fault.slip[:,0] = strikeslip
fault.slip[:,1] = dipslip
# Build the synthetics
data.buildsynth(fault)
# check data type
if data.dtype=='gps':
if vertical:
return data.synth.flatten()
else:
return data.synth[:,:-1].flatten()
elif data.dtype=='insar':
return data.synth.flatten()+reference
# All done
return
def walk(self, niter=10000, nburn=5000, method='AdaptiveMetropolis'):
'''
March the MCMC.
Kwargs:
* niter : Number of steps to walk
* nburn : Numbero of steps to burn
* method : One of the stepmethods of PyMC2
Returns:
* None
'''
# Define the stochastic function
@pymc.stochastic
def prior(value=self.initSampleVec):
prob = 0.
for prior, val in zip(self.Priors, value):
prior.set_value(val)
prob += prior.logp
return prob
# Create the deterministics
likelihood = []
for like in self.Likelihoods:
# Get what I need
data, dobs, Cd, vertical = like
# Create the forward method
@pymc.deterministic(plot=False)
def forward(theta=prior):
return self.Predict(theta, data, vertical=vertical)
# Build likelihood function
likelihood.append(pymc.MvNormalCov('Data Likelihood: {}'.format(data.name),
mu=forward,
C=Cd,
value=dobs,
observed=True))
# List of pdf to sample
pdfs = [prior] + likelihood
# Create a sampler
sampler = pymc.MCMC(pdfs)
# Make sure step method is what is asked for
sampler.use_step_method(getattr(pymc, method), prior)
# Sample
sampler.sample(iter=niter, burn=nburn)
# Save the sampler
self.sampler = sampler
self.nsamples = niter - nburn
# All done
return
def returnModel(self, model='mean'):
'''
Returns a fault corresponding to the desired model.
Kwargs:
* model : Can be 'mean', 'median', 'rand', an integer or a dictionary with the appropriate keys
Returns:
* fault instance
'''
# Create a dictionary
specs = {}
# Iterate over the keys
for key in self.sampledKeys:
# Get index
ikey = self.sampledKeys[key]
# Get it
if model=='mean':
value = self.sampler.trace('prior')[:][:,ikey].mean()
elif model=='median':
value = self.sampler.trace('prior')[:][:,ikey].median()
elif model=='std':
value = self.sampler.trace('prior')[:][:,ikey].std()
else:
if type(model) is int:
assert type(model) is int, 'Model type unknown: {}'.format(model)
value = self.sampler.trace('prior')[model,ikey]
elif type(model) is dict:
value = model[key]
# Set it
specs[key] = value
# Iterate over the others
for key in self.keys:
if key not in specs:
specs[key] = self.initialSample[key]
# Create a fault
fault = planarfault('{} model'.format(model),
utmzone=self.utmzone,
lon0=self.lon0,
lat0=self.lat0,
ellps=self.ellps,
verbose=False)
fault.buildPatches(specs['lon'], specs['lat'],
specs['depth'], specs['strike'],
specs['dip'], specs['length'],
specs['width'], 1, 1, verbose=False)
# Set slip values
fault.slip[:,0] = specs['strikeslip']
fault.slip[:,1] = specs['dipslip']
# Save the desired model
self.model = specs
# All done
return fault
def plot(self, model='mean', show=True):
'''
Plots the PDFs and the desired model predictions and residuals.
Kwargs:
* model : 'mean', 'median' or 'rand'
* show : True/False
Returns:
* None
'''
# Plot the pymc stuff
for iprior, prior in enumerate(self.Priors):
trace = self.sampler.trace('prior')[:][:,iprior]
fig = plt.figure()
plt.subplot2grid((1,4), (0,0), colspan=3)
plt.plot([0, len(trace)], [trace.mean(), trace.mean()],
'--', linewidth=2)
plt.plot(trace, 'o-')
plt.title(prior.__name__)
plt.subplot2grid((1,4), (0,3), colspan=1)
plt.hist(trace, orientation='horizontal')
#plt.savefig('{}.png'.format(prior[0]))
# Get the model
fault = self.returnModel(model=model)
# Build predictions
for data in self.datas:
# Build the green's functions
fault.buildGFs(data, slipdir='sd', verbose=False)
# Build the synthetics
data.buildsynth(fault)
# Check ref
if '{}'.format(data.name) in self.keys:
data.synth += self.model['{}'.format(data.name)]
# Plot the data and synthetics
cmin = np.min(data.vel)
cmax = np.max(data.vel)
data.plot(data='data', show=False, norm=[cmin, cmax])
data.plot(data='synth', show=False, norm=[cmin, cmax])
# Plot
if show:
plt.show()
# All done
return
def save2h5(self, filename):
'''
Save the results to a h5 file.
Args:
* filename : Name of the input file
Returns:
* None
'''
try:
import h5py
except:
print('No hdf5 capabilities detected')
# Open an h5file
fout = h5py.File(filename, 'w')
# Create the data sets for the keys
for key in self.sampledKeys:
ikey = self.sampledKeys[key]
fout.create_dataset(key, data=self.sampler.trace('prior')[:][:,ikey])
# Close file
fout.close()
# All done
return
def _getFromTheta(self, theta, string):
'''
Returns the value from the set of sampled and unsampled pdfs
'''
# Try to get the value
if string in self.sampledKeys:
return theta[self.sampledKeys[string]]
else:
return self.initialSample[string]
#EOF