-
Notifications
You must be signed in to change notification settings - Fork 0
/
prefixTree.ml
1028 lines (869 loc) · 30.8 KB
/
prefixTree.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(***********************************************************************)
(* prefixTree.ml *)
(* *)
(* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, *)
(* 2011, 2012 Yaron Minsky and Contributors *)
(* *)
(* This file is part of SKS. SKS is free software; you can *)
(* redistribute it and/or modify it under the terms of the GNU General *)
(* Public License as published by the Free Software Foundation; either *)
(* version 2 of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, but *)
(* WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *)
(* General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU General Public License *)
(* along with this program; if not, write to the Free Software *)
(* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *)
(* USA or see <http://www.gnu.org/licenses/>. *)
(***********************************************************************)
open StdLabels
open MoreLabels
open Printf
open Common
module Unix=UnixLabels
(*module ZZp = RMisc.ZZp *)
module Set = PSet.Set
module ZSet = ZZp.Set
exception Bug of string
(** Invariants:
- Parent of dirty node is dirty.
- A dirty non-leaf node has at least one dirty child
- dirty nodes are reachable from the root
- All nodes not InMem are mirrored on disk.
- All nodes on disk are in real tree.
*)
(** TODO:
- Make sure that newly created nodes (in particular, in a split)
start out Dirty
- Nodes that are destroyed should have their backing store on disk
destroyed as well. In particular, in a join.
*)
type key = Bitstring.t
module WHash =
Weak.Make(struct
type t = key
let equal = (=)
and hash = Hashtbl.hash
end)
type writestatus = Clean | Dirty
type 'a disk = OnDisk of key | InMem of 'a
type children = | Leaf of string Set.t
| Children of node disk array
and node = { svalues: ZZp.mut_array;
key: key;
mutable num_elements: int;
mutable children: children;
mutable wstatus: writestatus;
}
type 'txn db = { load : string -> string;
save : 'txn option -> key:string -> data:string -> unit;
delete : 'txn option -> string -> unit;
create_txn : unit -> 'txn option;
commit_txn : 'txn option -> unit;
abort_txn : 'txn option -> unit;
mutable maxnodes : int;
mutable inmem_count : int;
}
type 'txn tree = { root: node;
num_samples: int;
split_thresh: int; (* threshold for splitting node *)
join_thresh: int; (* threshold for deleting node.
Should be less than split_thresh *)
bitquantum: int; (* amount by which depths differ
from each other *)
points: ZZp.zz array;
db: 'txn db option;
mutable synctime: float;
}
type dheader = { d_num_samples: int;
d_split_thresh: int;
d_join_thresh: int;
d_bitquantum: int;
d_points: ZZp.zz array;
}
(******************************************************************)
let op_unwrap x = match x with
Some y -> y
| None -> failwith "Attempt to unwrap None"
let op_apply ~f x = match x with
None -> None
| Some x -> Some (f x)
let op_map ~f list = List.map ~f:(op_apply ~f) list
(******************************************************************)
(******************************************************************)
(******************************************************************)
(** Returns all extensions of bs to length ~len,
* starting at bit ~bit
*)
let rec child_keys_rec bs ~bit ~len =
if bit >= len
then
Set.add (Bitstring.copy bs) Set.empty
else (
Bitstring.set bs bit;
let keys_1 = child_keys_rec bs ~bit:(bit+1) ~len in
Bitstring.unset bs bit;
let keys_2 = child_keys_rec bs ~bit:(bit+1) ~len in
Set.union keys_1 keys_2
)
(** Return 2^t.bitquantum bitstrings which consist of all possible
* t.bitquantum-bit extensions of the key.
*)
let child_keys_raw bitquantum key =
let len = Bitstring.num_bits key in
let newlen = len + bitquantum in
let bs = Bitstring.copy_len key newlen in
let keys = child_keys_rec bs ~bit:len ~len:newlen in
Set.elements keys
let child_keys t key = child_keys_raw t.bitquantum key
(******************************************************************)
(******************************************************************)
(******************************************************************)
let marshal_to_string ~f x =
let bufc = Channel.new_buffer_outc 1000 in
f (bufc#upcast) x;
bufc#contents
let unmarshal_of_string ~f s =
let strc = new Channel.string_in_channel s 0 in
f (strc#upcast)
(******************************************************************)
(******************************************************************)
(******************************************************************)
let samesize set =
let sizes = Set.fold ~init:Set.empty set
~f:(fun string set -> Set.add (String.length string) set)
in
let nsizes = Set.cardinal sizes in
nsizes = 1 || nsizes = 0
let marshal_node (cout:Channel.out_channel_obj) n =
cout#write_int n.num_elements;
cout#write_int (Bitstring.num_bits n.key);
cout#write_string (Bitstring.to_bytes n.key);
Array.iter ~f:(fun zz -> cout#write_string (ZZp.to_bytes zz))
(ZZp.mut_array_to_array n.svalues);
(match n.children with
Leaf set ->
cout#write_byte 1;
assert (samesize set);
cout#write_int (Set.cardinal set);
Set.iter ~f:(fun s -> cout#write_string s) set
| Children _ ->
cout#write_byte 0)
let unmarshal_node ~bitquantum ~num_samples (cin:Channel.in_channel_obj) =
let zzp_len = ZZp.num_bytes () in
let num_elements = cin#read_int in
let keybits = cin#read_int in
let keybytes = Bitstring.bytelength keybits in
let keydata = cin#read_string keybytes in
let key = Bitstring.of_bytes keydata keybits in
let svalues = Array.init num_samples
~f:(fun _ -> ZZp.of_bytes (cin#read_string zzp_len)) in
let isleaf = cin#read_byte = 1 in
let children =
if isleaf then
let size = cin#read_int in
let a = Array.init size ~f:( fun i -> cin#read_string zzp_len ) in
Leaf (Set.of_list (Array.to_list a))
else
let ckeys = child_keys_raw bitquantum key in
Children (Array.map ~f:(fun key -> OnDisk key)
(Array.of_list ckeys))
in
{ svalues = ZZp.mut_array_of_array svalues;
num_elements = num_elements;
children = children;
wstatus = Clean;
key = key;
}
let node_to_string n = marshal_to_string ~f:marshal_node n
let node_of_string_raw ~bitquantum ~num_samples s =
unmarshal_of_string ~f:(unmarshal_node ~bitquantum ~num_samples) s
let node_of_string tree s =
node_of_string_raw ~bitquantum:tree.bitquantum
~num_samples:tree.num_samples s
(******************************************************************)
let marshal_header cout tree =
ignore (cout :> Channel.out_channel_obj);
cout#write_int tree.num_samples;
cout#write_int tree.split_thresh;
cout#write_int tree.join_thresh;
cout#write_byte tree.bitquantum;
Array.iter ~f:(fun zz -> cout#write_string (ZZp.to_bytes zz))
tree.points
let unmarshal_dheader cin =
ignore (cin :> Channel.in_channel_obj);
let zzp_len = ZZp.num_bytes () in
let num_samples = cin#read_int in
let split_thresh = cin#read_int in
let join_thresh = cin#read_int in
let bitquantum = cin#read_byte in
let points = Array.init num_samples
~f:(fun zz -> ZZp.of_bytes (cin#read_string zzp_len))
in
{ d_num_samples = num_samples;
d_split_thresh = split_thresh;
d_join_thresh = join_thresh;
d_bitquantum = bitquantum;
d_points = points;
}
(************)
let header_to_string tree =
marshal_to_string ~f:marshal_header tree
let dheader_of_string s =
unmarshal_of_string ~f:unmarshal_dheader s
let dheader_to_header db root dh synctime =
{ num_samples = dh.d_num_samples;
split_thresh = dh.d_split_thresh;
join_thresh = dh.d_join_thresh;
bitquantum = dh.d_bitquantum;
points = dh.d_points;
db = db;
root = root;
synctime = synctime;
}
(******************************************************************)
let marshal_synctime cout time = cout#write_float time
let unmarshal_synctime cin = cin#read_float
let synctime_to_string time =
marshal_to_string ~f:marshal_synctime time
let synctime_of_string time =
unmarshal_of_string ~f:unmarshal_synctime time
(******************************************************************)
(** converts bitstring to dbkey by writing the bitlength of the key followed
by the bytes of the key itself.
Note that a more efficient coding is possible, since really you only need 3
bits, to tell you how much of the last byte is used.
*)
let dbkey_of_key key =
let bufc = Channel.new_buffer_outc 8 in
let length = Bitstring.num_bits key in
let data = Bitstring.to_bytes key in
bufc#write_int length;
bufc#write_string data;
bufc#contents
(** dbkey for storing header *)
let int_to_bstring i =
let bufc = Channel.new_buffer_outc 1 in
bufc#write_int i;
bufc#contents
let root_dbkey = dbkey_of_key (Bitstring.create 0)
let header_dbkey = int_to_bstring (-1)
let synctime_dbkey = int_to_bstring (-2)
(******************************************************************)
(** returns the on-disk version of the node corresponding to dbkey.
No changes are made to the in-memory tree *)
let load_node tree dbkey =
let db = op_unwrap tree.db in
let nodestr = db.load dbkey in
node_of_string tree nodestr
(** Returns the node corresponding to the [cindex]'th child from the
[children] array. If an OnDisk node has been loaded into memory, [children]
is updated accordingly.
*)
let load_child t children cindex =
match children.(cindex) with
| OnDisk key ->
let db = op_unwrap t.db in
let cnode = load_node t (dbkey_of_key key) in
children.(cindex) <- InMem cnode;
db.inmem_count <- db.inmem_count + 1;
cnode
| InMem cnode -> cnode
(** side-effect-free version of load_child *)
let load_child_sef t children cindex =
match children.(cindex) with
| OnDisk key -> load_node t (dbkey_of_key key)
| InMem cnode -> cnode
(******************************************************************)
let save_node t txn node =
match t.db with
None -> ()
| Some db ->
let dbkey = dbkey_of_key node.key in
db.save txn ~key:dbkey ~data:(node_to_string node)
let save_synctime tree txn =
match tree.db with
None -> ()
| Some db ->
db.save txn ~key:synctime_dbkey
~data:(synctime_to_string tree.synctime)
(******************************************************************)
(******************************************************************)
(******************************************************************)
let rec clean_subtree tree txn node = match node.wstatus with
| Dirty ->
( match node.children with
Leaf _ -> ()
| Children children ->
Array.iter children
~f:(function
OnDisk key -> ()
| InMem cnode -> clean_subtree tree txn cnode)
);
save_node tree txn node;
node.wstatus <- Clean;
| Clean -> ()
let clean txn tree =
match tree.db with
None -> ()
| Some _ ->
clean_subtree tree txn tree.root;
save_synctime tree txn
(*************************************************************)
let rec delete_subtree_rec txn tree disknode =
let node = match disknode with
InMem node -> node
| OnDisk key -> load_node tree (dbkey_of_key key)
in
let db = op_unwrap tree.db in
db.delete txn (dbkey_of_key node.key);
match node.children with
Leaf _ -> ()
| Children children ->
Array.iter ~f:(delete_subtree_rec txn tree) children
let delete_subtree txn tree node =
perror "Fix this!";
delete_subtree_rec txn tree (InMem node)
(******************************************************************)
(* Full Tree Summaries ******************************************)
(******************************************************************)
let rec summarize_tree_rec ~lagg ~cagg tree nodedisk =
let node = match nodedisk with
InMem node -> node
| OnDisk key -> load_node tree (dbkey_of_key key)
in
match node.children with
| Leaf elements ->
lagg elements
| Children children ->
let values =
Array.map ~f:(summarize_tree_rec ~lagg ~cagg tree) children
in
cagg values
let summarize_tree ~lagg ~cagg tree =
summarize_tree_rec ~lagg ~cagg tree (InMem tree.root)
(******************************************************************)
let depth tree =
summarize_tree
~lagg:(fun _ -> 1)
~cagg:(fun depths -> 1 + MArray.max depths)
tree
let count_nodes tree =
summarize_tree
~lagg:(fun _ -> 1)
~cagg:(fun counts -> 1 + Array.fold_left ~f:(+) ~init:0 counts)
tree
let (<+>) (x1,y1) (x2,y2) = (x1 + x2, y1 + y2)
(* returns (# internal nodes, # leaf nodes) below & including current node *)
let count_node_types tree =
summarize_tree
~lagg:(fun _ -> (0,1))
~cagg:(fun counts ->
(1,0) <+>
Array.fold_left ~f:(<+>) ~init:(0,0) counts
)
tree
let get_elements tree node =
summarize_tree_rec
~lagg:(fun x -> x)
~cagg:(fun sets -> Array.fold_left ~f:Set.union ~init:Set.empty sets)
tree (InMem node)
let get_zzp_elements tree node =
let selem = get_elements tree node in
Set.fold selem ~init:ZSet.empty
~f:(fun x set -> ZSet.add (ZZp.of_bytes x) set)
let iter ~f tree =
summarize_tree
~lagg:(Set.iter ~f)
~cagg:(fun _ -> ())
tree
(******************************************************************)
(** returns the number of inmem nodes below and including
the present node *)
let rec count_inmem node = match node.children with
Leaf _ -> 1
| Children children ->
let counts = Array.map ~f:(function
OnDisk x -> 0
| InMem cnode -> count_inmem cnode)
children
in
1 + Array.fold_left ~f:(+) ~init:0 counts
(** returns the number of inmen nodes in the tree,
not counting the root. *)
let count_inmem_tree tree = count_inmem tree.root - 1
let get_inmem_count tree =
match tree.db with
None -> raise Not_found
| Some db -> db.inmem_count
let set_inmem_count tree newcount =
match tree.db with
None -> raise Not_found
| Some db -> db.inmem_count <- newcount
(*************************************************************)
(* Code for limiting number of InMem nodes ****************)
(*************************************************************)
let rec list_extract ~f list = match list with
[] -> []
| hd::tl -> match f hd with
None -> list_extract ~f tl
| Some x -> x::(list_extract ~f tl)
let rec list_prefix k list = match k with
0 -> []
| _ -> match list with
[] -> failwith "Requested prefix longer than list"
| hd::tl -> hd::(list_prefix (k-1) tl)
let list_prefix_suffix k list =
let rec loop k list prefix =
match k with
0 -> (List.rev prefix,list)
| _ -> match list with
[] -> failwith "Requested prefix longer than list"
| hd::tl ->
loop (k-1) tl (hd::prefix)
in
loop k list []
let inmem_children node = match node.children with
Leaf _ -> []
| Children children ->
list_extract ~f:(function
InMem x -> Some x
| OnDisk _ -> None
)
(Array.to_list children)
let rec get_frontier tree ~frontier ~newfrontier ~n ~count =
if count > n then failwith "get_frontier called with count>n"
else
match frontier, newfrontier with
| [],[] ->
raise (Bug "frontier and newfrontier both empty")
| [],newfrontier ->
get_frontier tree ~frontier:newfrontier ~newfrontier:[]
~n ~count
| hd::tl,newfrontier ->
let children = inmem_children hd in
let num_kids = List.length children in
if num_kids + count >= n then
(List.rev_append frontier newfrontier, count)
else
let newfrontier =
List.rev_append children newfrontier
in
let frontier = tl in
get_frontier tree ~frontier ~newfrontier ~n ~count:(count + num_kids)
(*
let inmem_children node = match node.children with
Leaf _ -> []
| Children children ->
list_extract ~f:(function
(i,InMem x) -> Some (i,x)
| (i,OnDisk _) -> None )
(Array.to_list (Array.mapi ~f:(fun i x -> (i,x)) children))
let rec get_frontier tree ~frontier ~newfrontier ~n ~count =
if count > n then raise (Bug (sprintf "count(%d) exceeded n(%d)" count n))
else if count = n then (frontier,None)
else
match frontier, newfrontier with
[],[] ->
raise (Bug "frontier and newfrontier should never both be empty")
| [],newfrontier ->
get_frontier tree ~frontier:newfrontier ~newfrontier:[]
~n ~count
| hd::tl, newfrontier ->
let children = inmem_children hd in
if List.length children + count <= n then
let children = List.map ~f:snd children in
get_frontier tree
~frontier:tl
~newfrontier:(List.rev_append children newfrontier)
~n ~count:(count + List.length children)
else
let needed = List.length children + count - n in
let (needed_children,unneeded_children) =
list_prefix_suffix needed children in
(tl @ newfrontier,
Some (hd,
List.map ~f:(fun (i,x) -> x) needed_children,
List.map ~f:(fun (i,x) -> i) unneeded_children)
)
*)
(** marks all the children of a node as being OnDisk *)
let disconnect_children node =
if node.wstatus = Dirty then
failwith "Disconnect children called on Dirty node";
match node.children with
| Leaf _ -> ()
| Children children ->
for i = 0 to Array.length children - 1 do
match children.(i) with
| OnDisk key -> ()
| InMem node -> children.(i) <- OnDisk node.key
done
(** Reduce number of InMem nodes to no more than n *)
let shrink_tree tree txn n =
clean txn tree;
let (frontier,count) = get_frontier tree
~frontier:[ tree.root ]
~newfrontier:[]
~n ~count:0 (* we don't count the root since it's
always in memory *)
in
List.iter frontier ~f:disconnect_children;
let real_count = count_inmem_tree tree in
if count <> real_count then
failwith (sprintf "%s. expected %d, found %d"
"tree shrinkage failed to produce tree of expected size"
count real_count) ;
set_inmem_count tree count
let shrink_tree_if_necessary tree txn =
match tree.db with
None -> ()
| Some db ->
if db.inmem_count > db.maxnodes
then shrink_tree tree txn (db.maxnodes / 2)
(******************************************************************)
(******************************************************************)
let width = 8
let rmask i = 0xFF lsl (width - i)
let lmask i = 0xFF lsr (width - i)
let string_index t depth string =
let q = t.bitquantum in
let lowbit = depth * q in
let highbit = lowbit + q - 1
in
let lowbyte = lowbit / 8
and lowbit = lowbit mod 8
and highbyte = highbit / 8
and highbit = highbit mod 8
in
if lowbyte = highbyte then
let byte = int_of_char string.[lowbyte] in
let key = (byte lsr (7 - highbit)) land
(lmask (highbit - lowbit + 1)) in
key
else (* extract from two adjacent bytes *)
let byte1 = int_of_char string.[lowbyte] in
let byte2 = int_of_char string.[highbyte] in
let key1 = (byte1 land (lmask (8 - lowbit))) lsl (highbit + 1) in
let key2 = (byte2 land (rmask (highbit + 1))) lsr (7 - highbit) in
let key = key1 lor key2 in
key
(******************************************************************)
let create_svalues points =
ZZp.svalues (Array.length points)
let incr_inmem_count tree =
match tree.db with
None -> ()
| Some db ->
db.inmem_count <- db.inmem_count + 1
let decr_inmem_count tree =
match tree.db with
None -> ()
| Some db ->
db.inmem_count <- db.inmem_count - 1
let create_node_basic key points =
{ svalues = create_svalues points;
num_elements = 0;
children = Leaf Set.empty;
key = key;
wstatus = Dirty;
}
let create_node tree key =
let points = tree.points in
incr_inmem_count tree;
create_node_basic key points
let add_to_node t node zz zzs marray =
ZZp.mult_array ~svalues:node.svalues marray;
node.num_elements <- node.num_elements + 1;
node.wstatus <- Dirty;
match node.children with
| Leaf elements ->
node.children <-
if Set.mem zzs elements
then failwith "add_to_node: attempt to reinsert element into prefix tree"
else Leaf (Set.add zzs elements)
| _ -> ()
let remove_from_node t node zz zzs marray =
ZZp.mult_array ~svalues:node.svalues marray;
node.num_elements <- node.num_elements - 1;
node.wstatus <- Dirty;
match node.children with
| Leaf elements ->
if not (Set.mem zzs elements)
then failwith "remove_from_node: attempt to delete non-existant element from prefix tree"
else node.children <- Leaf (Set.remove zzs elements)
| _ -> ()
(******************************************************************)
let split_at_depth t zz zzs node depth =
match node.children with
Children _ -> raise (Bug "split of non-leaf node.");
| Leaf elements ->
let ckeys = Array.of_list (child_keys t node.key) in
let children =
Array.map ~f:(fun key -> InMem (create_node t key)) ckeys
in
node.children <- Children children;
Set.iter elements
~f:(fun (zzs) ->
let zz = ZZp.of_bytes zzs in
let idx = string_index t depth zzs in
let marray = ZZp.add_el_array ~points:t.points zz in
let cnode = load_child t children idx in
add_to_node t cnode zz zzs marray
)
(******************************************************************)
let pad string bytes =
let len = String.length string in
if bytes > len then
let nstr = String.create bytes in
String.fill nstr ~pos:len ~len:(bytes - len) '\000';
String.blit ~src:string ~dst:nstr ~src_pos:0 ~dst_pos:0 ~len;
nstr
else
string
(******************************************************************)
(* Interface functions *******************************************)
(******************************************************************)
let create_empty_header ~points ~bitquantum ~num_samples ~thresh ~dbopt =
{ root = create_node_basic (Bitstring.create 0) points;
num_samples = num_samples;
bitquantum = bitquantum;
split_thresh = thresh;
join_thresh = thresh / 2;
points = points;
db = dbopt;
synctime = 0.0;
}
let create ?db:dbopt ~txn ~num_samples ~bitquantum ~thresh () =
let points = ZZp.points num_samples in
let dbopt =
match dbopt with
None -> None
| Some (load,save,delete,(create,commit,abort),maxnodes) ->
Some { load = load;
save = save;
delete = delete;
create_txn = create;
commit_txn = commit;
abort_txn = abort;
maxnodes = maxnodes;
inmem_count = 0;
}
in
match dbopt with
Some db ->
begin
try
let header_string = db.load header_dbkey in
let dheader = dheader_of_string header_string in
let root_string = db.load root_dbkey in
let root = node_of_string_raw ~bitquantum:dheader.d_bitquantum
~num_samples:dheader.d_num_samples root_string in
let synctime_string = db.load synctime_dbkey in
let synctime = synctime_of_string synctime_string in
dheader_to_header dbopt root dheader synctime
with
Not_found ->
(* no header found on disk. Start from scratch *)
let tree = create_empty_header ~points ~bitquantum
~num_samples ~thresh ~dbopt in
(* header and root must now be written to disk *)
let header_string = header_to_string tree in
let root_string = node_to_string tree.root in
let synctime_string = synctime_to_string tree.synctime in
db.save txn ~key:header_dbkey ~data:header_string;
db.save txn ~key:root_dbkey ~data:root_string;
db.save txn ~key:synctime_dbkey ~data:synctime_string;
tree
end
| None ->
(* No way of accessing the disk, so create a blank tree *)
create_empty_header ~points ~bitquantum ~num_samples ~thresh ~dbopt
(******************************************************************)
let rec insert_at_depth t zz zzs node marray depth =
add_to_node t node zz zzs marray;
(match node.children with
| Leaf elements ->
if node.num_elements > t.split_thresh
then split_at_depth t zz zzs node depth
| Children children -> (* insertion must continue at next depth *)
let cindex = string_index t depth zzs in
let cnode = load_child t children cindex in
insert_at_depth t zz zzs cnode marray (depth + 1)
)
let insert_both t txn zz zzs =
let zzs = pad zzs (ZZp.num_bytes ()) in
if String.length zzs <> ZZp.num_bytes ()
then raise (Invalid_argument
(sprintf "%s. %d found, %d expected"
"PrefixTree.insert_both: zzs has wrong length"
(String.length zzs) (ZZp.num_bytes ())
));
let marray = ZZp.add_el_array ~points:t.points zz in
let root = t.root in
insert_at_depth t zz zzs root marray 0;
shrink_tree_if_necessary t txn
let insert t txn zz =
let zzs = ZZp.to_bytes zz in
insert_both t txn zz zzs
let insert_str t txn zzs =
let zz = ZZp.of_bytes zzs in
insert_both t txn zz zzs
(******************************************************************)
let rec get_ondisk_subkeys tree db key =
try
ignore (db.load (dbkey_of_key key));
let ckeys = child_keys tree key in
let sets = List.map ~f:(get_ondisk_subkeys tree db) ckeys in
Set.add key (List.fold_left ~f:Set.union sets ~init:Set.empty)
with
Not_found -> (* has no subkeys, so emptyset *)
Set.empty
let rec delete_at_depth t txn zz zzs node marray depth =
remove_from_node t node zz zzs marray;
match node.children with
| Children children ->
if node.num_elements <= t.join_thresh then (
let elements = Set.remove zzs (get_elements t node) in
node.children <- Leaf elements;
match t.db with
None -> ()
| Some db ->
let subkeys = get_ondisk_subkeys t db node.key in
let subkeys = Set.remove node.key subkeys in
let inmem_delta = count_inmem node - 1 in
Set.iter ~f:(fun key -> db.delete txn (dbkey_of_key key))
subkeys;
db.inmem_count <- db.inmem_count - inmem_delta
) else (
let cindex = string_index t depth zzs in
let cnode = load_child t children cindex in
delete_at_depth t txn zz zzs cnode marray (depth + 1)
)
| _ -> ()
let delete_both t txn zz zzs =
let zzs = pad zzs (ZZp.num_bytes ()) in
if String.length zzs <> ZZp.num_bytes ()
then raise (Invalid_argument
"PrefixTree.delete_both: zzs has wrong length");
let marray = ZZp.del_el_array ~points:t.points zz in
let root = t.root in
delete_at_depth t txn zz zzs root marray 0
let delete t txn zz =
let zzs = ZZp.to_bytes zz in
delete_both t txn zz zzs
let delete_str t txn zzs =
let zz = ZZp.of_bytes zzs in
delete_both t txn zz zzs
(******************************************************************)
(******************************************************************)
(******************************************************************)
let set_maxnodes tree txn n =
match tree.db with
None -> ()
| Some db ->
db.maxnodes <- n;
shrink_tree_if_necessary tree txn
let get_maxnodes tree =
match tree.db with
None -> raise (Invalid_argument
"Attempt to invoke DB operation without DB")
| Some db -> db.maxnodes
(******************************************************************)
let rec get_node_rec ~sef t node zzs ~depth ~goal_depth =
if depth < goal_depth
then (
match node.children with
Children children ->
let cindex = string_index t depth zzs in
let cnode =
(if sef then load_child_sef else load_child)
t children cindex in
get_node_rec ~sef t cnode zzs ~depth:(depth+1) ~goal_depth
| Leaf _ ->
raise Not_found
)
else if depth = goal_depth then node
else failwith "Goal depth exceeded"
let get_node_str ?(sef=false) t zzs depth =
let rval = get_node_rec ~sef t t.root zzs ~depth:0 ~goal_depth:depth in
(** shrink the tree if required, creating transaction as needed *)
begin
match t.db with
None -> ()
| Some db ->
let txn = db.create_txn () in
try
shrink_tree_if_necessary t txn;
db.commit_txn txn
with
e -> db.abort_txn txn; raise e
end;
rval
let get_node ?(sef=false) t zz depth =
let zzs = ZZp.to_bytes zz in
get_node_str ~sef t zzs depth
let get_node_key ?(sef=false) t key =
if (Bitstring.num_bits key) mod t.bitquantum <> 0
then raise (Invalid_argument "Prefix given of wrong length")
else
let depth = (Bitstring.num_bits key) / t.bitquantum in
get_node_str ~sef t (Bitstring.to_bytes key) depth
(******************************************************************)
let root t = t.root
let children node = match node.children with
| Leaf _ -> None
| Children children -> Some children
let svalues node = node.svalues
let size node = node.num_elements
let is_leaf node =
match node.children with Leaf _ -> true | _ -> false
let points tree = tree.points
let elements tree node =
let pset = get_elements tree node in
Set.fold ~f:(fun zzs set -> ZSet.add (ZZp.of_bytes zzs) set)
~init:ZSet.empty pset
(******************************************************************)
let node_size tree nodedisk =
let node = match nodedisk with
InMem node -> node
| OnDisk key -> load_node tree (dbkey_of_key key)
in
node.num_elements
let nonempty_children tree children =
let sizes = Array.map ~f:(node_size tree) children in
let nonempty = Array.mapi ~f:(fun i s -> (i,s > 0) ) sizes in
Array.fold_left ~f:(fun list (i,nonempty) ->
if nonempty then i::list else list)
~init:[] nonempty
let random_element list =
let i = Random.int (List.length list) in
List.nth list i
let rec get_random tree node =
match node.children with
Leaf children ->