-
Notifications
You must be signed in to change notification settings - Fork 1
/
problem.py
37 lines (27 loc) · 985 Bytes
/
problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import pandas as pd
import rampwf as rw
from sklearn.model_selection import ShuffleSplit
problem_title = 'Helathcare fees prediction'
_target_column_name = 'hono_sans_depassement_moyens'
# A type (class) which will be used to create wrapper objects for y_pred
Predictions = rw.prediction_types.make_regression()
# An object implementing the workflow
workflow = rw.workflows.EstimatorExternalData()
score_types = [
rw.score_types.RMSE(name='rmse', precision=3),
]
def get_cv(X, y):
cv = ShuffleSplit(n_splits=8, test_size=0.5, random_state=57)
return cv.split(X)
def _read_data(path, f_name):
data = pd.read_csv(os.path.join(path, 'data', f_name))
y_array = data[_target_column_name].values
X_df = data.drop(_target_column_name, axis=1)
return X_df, y_array
def get_train_data(path='.'):
f_name = 'train.csv'
return _read_data(path, f_name)
def get_test_data(path='.'):
f_name = 'test.csv'
return _read_data(path, f_name)