-
Notifications
You must be signed in to change notification settings - Fork 247
/
train.py
57 lines (47 loc) · 2.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import numpy as np
import matplotlib.pyplot as plt
import utils
from matting import*
# settings
parser = argparse.ArgumentParser(description='ZZX TRAIN SEGMENTATION')
parser.add_argument('--dataset', type=str, default='cvprw2020-ade20K-defg', metavar='str',
help='dataset: cvprw2020-ade20K-defg or ... (default: cvprw2020-ade20K-defg)')
parser.add_argument('--batch_size', type=int, default=8, metavar='N',
help='input batch size for training (default: 4)')
parser.add_argument('--in_size', type=int, default=384, metavar='N',
help='input image size for training (default: 256)')
parser.add_argument('--print_models', action='store_true', default=False,
help='visualize and print networks')
parser.add_argument('--net_G', type=str, default='coord_resnet50', metavar='str',
help='net_G: resnet50 or coord_resnet50 (default: coord_resnet50 )')
parser.add_argument('--checkpoint_dir', type=str, default=r'./checkpoints', metavar='str',
help='dir to save checkpoints (default: ./checkpoints)')
parser.add_argument('--vis_dir', type=str, default=r'./val_out', metavar='str',
help='dir to save results during training (default: ./val_out_G)')
parser.add_argument('--lr', type=float, default=1e-4,
help='learning rate (default: 0.0002)')
parser.add_argument('--max_num_epochs', type=int, default=200, metavar='N',
help='max number of training epochs (default 200)')
args = parser.parse_args()
if __name__ == '__main__':
# args.net_G = 'resnet50'
# args.checkpoint_dir = 'checkpoints_G_resnet50'
# args.in_size = 384
# args.net_G = 'coord_resnet50'
# args.checkpoint_dir = 'checkpoints_G_coord_resnet50'
# args.in_size = 384
dataloaders = utils.get_loaders(args)
# # How to check if the data is loading correctly?
# dataloaders = utils.get_loaders(args)
# for i in range(100):
# data = next(iter(dataloaders['train']))
# vis_A = utils.make_numpy_grid(data['A'])
# vis_B = utils.make_numpy_grid(data['B'])
# vis = np.concatenate([vis_A, vis_B], axis=0)
# print(data['A'].shape)
# print(data['B'].shape)
# plt.imshow(vis)
# plt.show()
skydet = SkyDetector(args=args, dataloaders=dataloaders)
skydet.train_models()