Skip to content

Latest commit

 

History

History
57 lines (38 loc) · 1.62 KB

README.md

File metadata and controls

57 lines (38 loc) · 1.62 KB

NYUD2-DIR

Installation

Prerequisites

  1. Download and extract NYU v2 dataset to folder ./data using
python download_nyud2.py
  1. (Optional) We have provided required meta files nyu2_train_FDS_subset.csv and test_balanced_mask.npy for efficient FDS feature statistics computation and balanced test set mask in folder ./data. To reproduce the results in the paper, please directly use these two files. If you want to try different FDS computation subsets and balanced test set masks, you can run
python preprocess_nyud2.py

Dependencies

  • PyTorch (>= 1.2, tested on 1.6)
  • numpy, pandas, scipy, tqdm, matplotlib, PIL, gdown, tensorboardX

Getting Started

Train a model using Balanced MSE

GAI

# preprocess gmm
python preprocess_gmm.py

python train.py \
--bmse --imp gai --gmm gmm.pkl --init_noise_sigma 1.0 --fix_noise_sigma

BNI

python train.py \
--bmse --imp bni --init_noise_sigma 1.0 --fix_noise_sigma

Evaluate a trained checkpoint

python test.py --eval_model <path_to_evaluation_ckpt>

Reproduced Benchmarks and Model Zoo

We provide below reproduced results on NYUD2-DIR (metric RMSE).

Model Overall Many-Shot Medium-Shot Few-Shot Download
GAI 1.279 0.819 0.917 1.705 model
BNI 1.281 0.833 0.856 1.714 model