

GAME SERVER

WEBSITE
IPT Task 3 - Project

ABOUT

A website designed to

showcase various Game

Servers so that players can

join them quickly and

easily.

By Jack Donaldson

Table of Contents
Understanding the Problem .. 3

Problem Statement ... 3

Preliminary Investigation .. 3

Justification of Research Methods ... 3

Interview ... 4

Survey .. 6

Conclusion .. 9

Constraints ... 9

Criteria for Success ... 10

Project Plan ... 12

GANTT Chart ... 12

Finance Plan... 12

Project Journal .. 14

Summary .. 14

Making Decisions .. 16

Analysis Report ... 16

Mobile App... 16

Website ... 18

Discord/Game Forum Server .. 18

Chosen Solution ... 18

Design Specifications .. 18

Designing Solutions ... 19

Design Tools .. 19

Technical Specifications ... 23

Implementation .. 28

Conversion Method ... 28

Participant Training .. 29

Initial Testing .. Error! Bookmark not defined.

Testing, Evaluation & Maintenance .. 29

Testing .. Error! Bookmark not defined.

Evaluation ... 32

Maintenance ... 32

Understanding the Problem
Problem Statement

The aim of this project is to produce a solution for a Client that allows Game

Server owners to advertise their servers to players in a quick and easy manner.

It also needs to be appealing and compete with existing solutions, in turn

becoming financially sustainable.

Preliminary Investigation

Justification of Research Methods

As part of my initial preliminary investigation, I have chosen to conduct

research in the form of surveys and interviews. I chose to interview my client as

they are the main key stakeholder and will give a good foundation for

narrowing down the areas of further research, as such their responses would

be the most valuable and need to be detailed. Unfortunately despite the

detailed responses interviews allow for, they are particularly time-consuming

meaning that I couldn’t conduct many of them and as such have just decided

to conduct them with a few key stakeholders, mainly the client, as well as some

Game Server owners to better understands their needs.

After my main interview was conducted I decided to create and send a survey

to potential users of the solution about what kind of features or capabilities

they would want/expect in a service like this. The results of the interview helped

direct what kind of questions to ask the potential users in this survey, for

example, I focused a significant amount of questions on what format would

be best suited for the solution, such as an app or a website as they were the

two main preferred options illustrated in the interviews.

Unlike interviews, surveys are a lot quicker to produce and receive results from,

they also can easily target a large number of people, and in this case, I was

able to get over 110 responses to my survey. However, unlike interviews, surveys

are often limited to simple questions and cannot provide very detailed data,

hence quantitative data is really the only type you can receive from surveys,

in turn limiting the variety of questions I could ask.

Interview

Client

As part of the long interview with the client, I have included the transcript for a

few key questions within which will help narrow down our focus for the solution.

IN TERMS OF THE ACTUAL SOLUTION IS THERE ANY PREFERENCE TO WHAT TYPE OF DIGITAL SOLUTION

YOU WOULD LIKE?

MOST OF OUR COMPETITORS ARE USING A MAIN WEBSITE, WHICH HAS PROVEN TO BE QUITE

POPULAR. OTHER CONSIDERATIONS WE WOULD LIKE YOU TO LOOK INTO WOULD BE A MOBILE APP

AS A SIGNIFICANT AMOUNT OF USERS ARE NOW TRYING TO FIND THIS INFORMATION QUICKLY

USING A MOBILE DEVICE. MORE RECENTLY, ONLINE COMMUNITIES OR FORUMS ARE ALSO

BECOMING POPULAR WHICH MAY BE ANOTHER AVENUE TO LOOK INTO.

ARE THERE ANY SPECIFIC GAMES YOU WOULD LIKE US TO SUPPORT? IF SO WHAT ARE

THEY?

WELL IDEALLY, THE SOLUTION WOULD BE AS GENERIC OR MALLEABLE AS POSSIBLE IN ORDER FOR IT

TO BE USED ACROSS A WIDE VARIETY OF GAMES IN THE FUTURE. FOR NOW, THE MOST POPULAR

GAME WITH THIS TYPE OF SERVICE WOULD BE MINECRAFT BUT WE WOULD LIKE TO SEE THE SOLUTION

WORK FOR OTHER GAMES. AT THE MOMENT OUR COMPETITORS DON’T REALLY HAVE A DIVERSE

RANGE OF SUPPORTED GAMES AND OFTEN TARGET ONE, WE PLAN TO TARGET AS MANY AS

POSSIBLE TO HELP BUILD OUR BRAND.

THOSE OTHER GAMES YOU REFER TO, DO YOU HAVE ANY EXAMPLES?

SURE, RUST, TERRARIA, ARK: SURVIVAL EVOLVED,

UNTURNED, CONAN EXILES & EVEN CS:GO SURPRISINGLY.

AS A START-UP, WOULD YOU PREFER A LARGER SOLUTION WITH MORE ONGOING MAINTENANCE

COSTS OR A SMALLER MORE CHEAPER ONE?

WE DO UNDERSTAND THAT THERE WILL BE INEVITABLE ONGOING COSTS FOR RUNNING THE

PROVIDED SOLUTION, IDEALLY, WE WOULD PREFER AS LITTLE ONGOING COSTS AS POSSIBLE.

HOWEVER, WE ARE PREPARED TO SPEND A BIT MORE EARLY ON IF IT MEANS A MORE POPULAR

PRODUCT IN THE LONG TERM AS THAT CAN BECOME A GOOD SELLING POINT, PARTICULARLY

AGAINST OUR COMPETITORS. THAT SAID, WE WOULD PREFER MORE ONGOING TECHNICAL COSTS

IF IT MEANS WE DON’T HAVE TO EMPLOY AS MANY PEOPLE TO OVERSEE THE MAINTENANCE IN THE

LONG RUN AS THEY CAN BE EXPENSIVE, PARTICULARLY IN AUSTRALIA.

This interview helped elaborate on what the client was looking for in a solution,

identifying the different types of solutions they would prefer, mainly an app or

website. The questions were designed to mainly clarify the expectations of the

client, in this case, what ongoing costs they were prepared to accommodate

as well as any games they wanted to be supported. In this case, they divulged

how they wanted it to work for as many games as possible in order to

differentiate from their competitors who often only worked with single games.

It became apparent that they were prepared to spend initially in order to build

a better product then their competitors as competition in this area was quite

fierce.

Game Server Owners

In addition to the main interview with the client, I decided to interview some

Game Server owners to get an understanding of what they would like in a

solution of this kind as well as what they have found works effectively.

IN TERMS OF THE ACTUAL SOLUTION IS THERE ANY PREFERENCE TO WHAT TYPE OF DIGITAL SOLUTION

YOU WOULD LIKE?

MOST OF OUR COMPETITORS ARE USING A MAIN WEBSITE, WHICH HAS PROVEN TO BE QUITE

POPULAR. OTHER CONSIDERATIONS WE WOULD LIKE YOU TO LOOK INTO WOULD BE A MOBILE APP

AS A SIGNIFICANT AMOUNT OF USERS ARE NOW TRYING TO FIND THIS INFORMATION QUICKLY

USING A MOBILE DEVICE. MORE RECENTLY, ONLINE COMMUNITIES OR FORUMS ARE ALSO

BECOMING POPULAR WHICH MAY BE ANOTHER AVENUE TO LOOK INTO.

ARE THERE ANY SPECIFIC GAMES YOU WOULD LIKE US TO SUPPORT? IF SO WHAT ARE

THEY?

WELL IDEALLY, THE SOLUTION WOULD BE AS GENERIC OR MALLEABLE AS POSSIBLE IN ORDER FOR IT

TO BE USED ACROSS A WIDE VARIETY OF GAMES IN THE FUTURE. FOR NOW, THE MOST POPULAR

GAME WITH THIS TYPE OF SERVICE WOULD BE MINECRAFT BUT WE WOULD LIKE TO SEE THE SOLUTION

WORK FOR OTHER GAMES. AT THE MOMENT OUR COMPETITORS DON’T REALLY HAVE A DIVERSE

RANGE OF SUPPORTED GAMES AND OFTEN TARGET ONE, WE PLAN TO TARGET AS MANY AS

POSSIBLE TO HELP BUILD OUR BRAND.

THOSE OTHER GAMES YOU REFER TO, DO YOU HAVE ANY EXAMPLES?

SURE, RUST, TERRARIA, ARK: SURVIVAL EVOLVED,

UNTURNED, CONAN EXILES & EVEN CS:GO SURPRISINGLY.

AS A START-UP, WOULD YOU PREFER A LARGER SOLUTION WITH MORE ONGOING MAINTENANCE

COSTS OR A SMALLER MORE CHEAPER ONE?

WE DO UNDERSTAND THAT THERE WILL BE INEVITABLE ONGOING COSTS FOR RUNNING THE

PROVIDED SOLUTION, IDEALLY, WE WOULD PREFER AS LITTLE ONGOING COSTS AS POSSIBLE.

HOWEVER, WE ARE PREPARED TO SPEND A BIT MORE EARLY ON IF IT MEANS A MORE POPULAR

PRODUCT IN THE LONG TERM AS THAT CAN BECOME A GOOD SELLING POINT, PARTICULARLY

AGAINST OUR COMPETITORS. THAT SAID, WE WOULD PREFER MORE ONGOING TECHNICAL COSTS

IF IT MEANS WE DON’T HAVE TO EMPLOY AS MANY PEOPLE TO OVERSEE THE MAINTENANCE IN THE

LONG RUN AS THEY CAN BE EXPENSIVE, PARTICULARLY IN AUSTRALIA.

This interview helped elaborate on what the client was looking for in a solution,

identifying the different types of solutions they would prefer, mainly an app or

website. The questions were designed to mainly clarify the expectations of the

client, in this case, what ongoing costs they were prepared to accommodate

as well as any games they wanted to be supported. In this case, they divulged

how they wanted it to work for as many games as possible in order to

differentiate from their competitors who often only worked with single games.

It became apparent that they were prepared to spend initially in order to build

a better product then their competitors as competition in this area was quite

fierce.

Survey

After conducting the interview, as elaborated above I decided to survey

Gamers, particularly ones who had used a similar service before in order to try

and understand what features they want/expected as well as to get a gist of

some other general expectations. This provides a good foundation for what

the ‘customers’ are actually expecting from this product as well to reaffirm that

the assumptions of the client, as illustrated through the interview are accurate.

As seen below, this interview was relatively short in order to encourage people

to fill it out, the initial questions were mainly for just ensuring that the only results

which were examined were those of our target market. This meant that the

latter questions regarding features were only answered by people who knew

what they were talking about.

After the initial confirmation questions, I then tried to understand peoples

preferences in regards to format, essentially suggesting the options of a

website, app and game forum which came from the clients suggestions when

interviewed. Furthermore, the popularity of features was obtained, here fairly

common features were listed such as ‘Server Voting’ to confirm whether the

users of a solution like this actually needed/requested these features despite it

essentially becoming ‘standard’ to have voting on these types of sites.

Generally speaking, the responses from this allowed me to learn where to

prioritise my time in terms of development as lower priority features could

become time consuming and wasteful.

Furthermore, the question regarding user’s habits with these types of solutions

was placed in order to determine how to prioritise search engine optimisation

(SEO) in our feature set. Essentially, users were asked if they stayed with these

type of solutions through bookmarks or if they consistently just googled and

picked the first result. This is important as often sites that are unique and with a

higher perceived value will be bookmarked, meaning that if an audience is

built up through the knowledge of a brand then a drop in ranking on search

engines such as Google or Yahoo wouldn’t matter as much.

Next, Question 6, regarding user interface design is meant to analyse what

type of sites users are looking for. Combined with competitor research and

analysis there often seems to be a clear trend for solutions that are ‘too

detailed’ and end up sacrificing user interface design and space in order to

cram as much information on the screen as possible. As such, I was trying to

determine if that trend was because of user interaction or if it was just because

there wasn’t really that many well designed competing sites forcing them to

innovate. This can be seen with this (https://minecraft-mp.com/) site which is

extremely detailed but still highly successful. However, other server list sites

(notably not game-related ones) such as this one (https://top.gg/) use a much

simpler design and still work well. Hence, determining if a much more visually

appealing site would be viable and liked by Gamers is important. Finally, any

extra opinions were welcome but it was rather difficult to analyse this question

effectively due to the highly individualised responses.

https://minecraft-mp.com/
https://top.gg/

Conclusion

Constraints

Some of the main constraints I have identified for the project from my

preliminary research which need to be considered are:

• Time available and deadline for the project

• Ensuring that the client is happy with the end product

• Making sure the project is financially viable

• The budget available

• IT/Technical Skills required to complete the project

Criteria for Success

After analysing the responses from both the interviews and surveys I compiled

a list of key criteria that the project should meet in order to evaluate its success.

These are categorised by their priority meaning that I will focus on the high

priority tasks first as they are more important.

Criteria Priority

Needs to be easily accessible on

Mobile devices
High

Rank high and optimise for search

results
High

Allow server owners to upload

custom promotional images/art.
High

Have a dedicated administrator

section
High

Allow voting for favourite servers High

Accessed quickly and fast High

Within the budget of $500 Medium

Works on Old devices Medium

Requires little maintenance Medium

Inclusive and accessible to screen

readers and has a minimal CLS

(Cumulative Layout Shift)

Low

Runs efficiently, requiring less server

resources
Low

Allow server owners to have

analytics
Low

Overall most of the priority criteria relate to features such as ranking high in

search results or allowing server owners to upload custom art. This can be

deemed as a crucial part of the project as both the interviews and surveys

confirmed that this was important to the end-users and without it the project

wouldn’t be successful. However, not everything can be a high priority and as

such the ability to work on old devices and to remain within budget is fairly

flexible, meaning it is not required but still would be good to have. This is mainly

because the client didn’t mind too much on budget and neither do I nor will

most of the people using the website be on older devices as often tech

enthusiasts are using the latest technology. In regards to low priority features

things such as optimisation and analytics/tracking aren’t required in order for

the project to be a success however if time permits they are still good things to

consider but ultimately aren’t pivotal to the success of the project.

Project Plan

GANTT Chart

Finance Plan

Although I am willing to spend up to around $500 as part of the project I am

still trying to keep costs as low as possible in order to maximise profit. As part of

this, I have chosen competitive pricing, particularly in regards to Server Hosting.

ITEM NOTES PURCHASE

COST

ACTUAL

COST TO

ME

DOMAIN NAME Used A Coupon For 40%

off ☺

$19.99 $11.99

AMAZON EC2

VIRTUAL SERVER

HOSTING (OHIO)

Allowed a ‘FREE’ tier for

first 12 months as a

student.

$0.0116/Hour $0

AMAZON RDS

RELATIONAL

DATABASE SERVER

HOSTING (OHIO)

Allowed a ‘FREE’ tier for

first 12 months as a

student.

$0.017/Hour $0

AMAZON

ELASTICSEARCH

SERVER HOSTING

(OHIO)

Allowed a ‘FREE’ tier for

first 12 months as a

student.

$0.018/Hour $0

AMAZON DATA

TRANSFER FROM

OHIO TO NORTH

VIRGINIA

Required in order to send

data from server host to

email server. Usually only

less than a GB each

month.

$0.01 per GB $0.01

AMAZON SIMPLE

EMAIL SERVICE

(NORTH VIRGINIA)

Free 62,000 emails per

month. Shouldn’t need

more than this.

$0.10 for every

1000 emails

over 62,000

$0

REPL IT HACKER

PLAN

Free With Github Student

Education Pack. Needed

to use Source Control in

Repl.it

$5/Month $0

LAPTOP/COMPUTER Laptop was not

purchased just for this

project and cheaper

ones would be available

and suffice.

$1,100 $0

INTERNET PLAN –

TELSTRA NBN

UNLIMITED

Already had an internet

plan for additional

interests, hence not

$90/Month $0

associating this cost

directly to the project.

 Total: $12.00

As illustrated above, Amazon has a rather generous ‘Free tier’ on their web

hosting platform that lasts for a year. This means the majority of the services

required will be free for the first year of operation, however in regards to

industry pricing, once the free tier is up the pricing is very competitive. In this

case, the pricing given is their ‘On-demand’ pricing which is what will be used

initially. Once the free tier is up and payments start been made for the servers

and their power Amazon will allow you to reduce the cost of your servers by

locking in a plan for either 1 or 3 years and ‘reserving’ your servers. This will

provide a discount of 40% on the prices provided above and as such if the

solution is a success it will be very cheap and efficient to run.

As an additional note, post evaluation Amazon has announced support for

purchasing email servers in their Ohio region. Once the application has been

accepted this will allow our emails to be sent from Ohio, in turn meaning that

no data will be needed to be transferred to North Virginia, therefore the cost

will be reduced. However, their opening date is past the submission of this

project, hence it still being required in this project.

Project Journal

Summary

As illustrated above on the Information System in Context Diagram, this system

generally has one main type of user which is Gamers who are looking for a

server. This they then interact with this system whose goal is to gather all server

information and return relevant results to them in order to allow them to find a

suitable server that they may enjoy. As with any information system, the

information processes are involved, essentially information such as search

terminology is collected from the user and processed through various

mechanisms, generally with the aid of a database in order to find appropriate

results. However, in order for these processes to work it requires participants

such as site administrators who approve server listings, monitor and maintain

both the website and database. It also needs Game Server Owners to register

their server details with the site in order for it to become searchable.

Additionally, the data/information used throughout is required whether that be

the raw server details, usage analytics or the search terminology entered by

the user. Linking this together is the aid of Information Technology, whether that

be the servers hosting and processing the database or website or even the

internet’s arrays of routers, switches and hubs transmitting packets between

the individual’s devices or their computers. These components are all required

to work together to achieve one goal in order to allow this Game Server

Information System to work properly.

Making Decisions

Analysis Report

Mobile App

Overview

This solution involves designing a Mobile App that users can download in order

to browse and search for their favourite games servers. This would have to be

suitable for both Android and IPhone users in order to maximise the effective

target market and doing so would mean that any advertising revenue would

potentially get cut by 30% due to app store policies. However, the mobile app

market is forever expanding with majority of the world’s population owning a

phone, giving them easier access than ever. This type of solution also hasn’t

been adopted yet by any competitor Game Server Listing sites so it could be

a very open market to break into, particularly as a fledgling product.

Feasibility Study

Technical

This would require both an Android and an Apple IPhone to develop on and

test the app repeatedly. This is one of the challenges required when building

an app as it has to be ‘cross-platform’ this means that although Android and

Apple both use different languages when programming apps you often have

to have an ‘intermediary’ language, for example like Xamarin Forms. In this

scenario the layouts of the apps can be created from one language (Xamarin)

but any functionality has to be split between the platforms and programmed

in two different languages as each company has their own syntax and rules

for accessing the phones. This means ultimately that I would have to learn three

different programming languages to even attempt this solution which requires

almost double the amount of work to just support Android and Apple products.

This is echoed in today’s society as majority of solo app developers choose one

platform and stick to it, in this case ruining market potential.

Operational

Economical

This solution would require the purchasing of an IPhone as well as an Android

Phone without a cracked screen. This alone would cost well over $1000 which

is significantly higher than our preferred budget as outlined in the finance plan

and criteria for success. Although I am flexible this is still significantly higher than

I would like, considering the need to also purchase recurring Apple developer

licenses in order to publish the app as well as a Google Play license needed to

publish. Alongside this in order to export an Apple app you need an apple

product such as a MacBook Air with the other alternative been to pay a

subscription for a cloud based compiling product. In conjunction the creation

of an app would mean it has to abide by Google & Apple’s terms of service,

generally meaning they take a slice of revenue usually around 30% which is a

significant margin, particularly for a start-up.

Schedule

As I haven’t had much experience with mobile apps or related products

before this may take significantly longer than expected. Alongside this, it has

been recommended by the client to try and get the project finished as quickly

as possible. As such, the proposed solution may struggle to meet the deadline

and has a significantly high potential to go over the deadline as the chance

for bugs is high enough without considering I’m a novice in regards to app

development.

Advantages

The main advantages of this solution is that it is a growing market with big

potential and very limited competition in this niche. As such, the rise of mobile

gaming has become a considerable factor in how popular this type of app

could become. This type of app could potentially also allow for the ability of

an offline list, allowing people to view it when they have poor or limited internet

connectivity, although generally if they are playing multiplayer games, internet

connectivity isn’t really an issue.

Disadvantages

Some of the main disadvantages of this solution involve having to purchase

some significant hardware in order to start even developing and compiling the

app which would blow the budget out of proportions. This also requires learning

three new languages which will take a lot of time and potentially cause the

project to go over budget which is the last thing the client wants.

Website

Overview

Feasibility Study

Technical

Operational

Economical

Schedule

Advantages

Disadvantages

Discord/Game Forum Server

Overview

Feasibility Study

Technical

Operational

Economical

Schedule

Advantages

Disadvantages

Chosen Solution

Design Specifications

Provide details of what you require to solve the problem – hardware,

 software, input, output processing. Add table with requirements +

reasons for use

Designing Solutions

Design Tools

Context Diagram

Data Flow Diagrams

Database Schematic Diagram

Data Dictionary

Other options include Storyboards, Data dictionaries + decision trees & tables

(Not really needed but would be good)

Technical Specifications

Hardware

The chosen solution will require a significant amount of hardware. However, in

this case, some of that hardware particularly the servers hosting the website

will be rented out as it is much more economic and can scale very easily with

the help of companies such as Amazon Web Services. To begin with,

computers are required in order to program the website using various software.

In this case, I have used my personal Desktop Computer alongside my School

laptop as well as my personal laptop. Each of these comes equipped with a

fairly powerful processor (Intel i5 or above) in order to ensure code execution

time is minimised as well as a fast NVME SSD allowing quick file browsing and

access. The faster code runs, the faster I can program and in turn complete

the project. In this case, my testing sandbox is located on an external server

array hosted by https://Repl.It. The server which actually runs the demo

application runs with 2 GB of RAM as well as 2 vCPU’s giving plenty of room for

my quick testing and running any changes. However in order to access both

this server and the test website I require fast internet access. Unfortunately, my

current situation means that I am unable to get a decent internet connection

as it currently is very slow and cuts out making it increasingly more difficult to

program on the demo server at home. The infrastructure we have is NBN Fixed

Wireless however, my school has a much faster internet connection making it

easier to program there. As such I have often stayed back and worked on the

project using the faster internet on my laptop, in turn increasing efficiency

thanks to much lower latency.

Furthermore, the production servers the website run on are hosted in Ohio, USA.

The reason for this is it is a fairly central location in terms of the world whilst

having a reasonable ping to European countries and one to the outer Asian

regions. This is particularly important considering website latency is one of the

major factors that drive users to click away from a site before it even loads.

Another advantage of this location is it is very central to my user base, i.e. most

of them are from either America or Europe, particularly the United Kingdom.

Currently, the website runs on a virtualised hosting server, meaning that it is

‘virtually’ split up with software and its resources are allocated to different users.

In this case, users pay for the number of resources you will need which is much

more beneficial when compared to a shared hosting alternative offered by

many cheaper website hosts. Shared hosting allows websites unlimited access

https://repl.it/

to the machine and usually is advertised with high CPU counts and RAM but in

reality, it just takes one application to completely throttle the resources of the

whole server to take it down, hence the more secured, slightly more expensive

version of virtualised hosting is the better option in this scenario. The actual

resources allocated to the server at the moment is 2 vCPUs and 2GB of RAM

which thanks to optimisations in my code should be able to run around 50,000

concurrent users according to stress tests I have performed (more detail later

on). The reason for this particular resource usage is mainly due to it being the

highest amount covered under Amazon’s 12 month ‘Free Tier’. However, the

website code isn’t the only thing requiring a virtualised server, both the

database and the elastic search engine (responsible for indexing and

processing search results) run on separate virtualised servers. These all have a

similar configuration with slightly more ram for the database and slightly less

CPU power in the elastic search configuration, mainly due to it not being as

needed. These severs all interact using a Local Area Network and ‘virtualised’

connections, meaning that it is very simple and quick for them to interact with

each other. In this case, each of the virtualised servers is stored in a different

building to increase data redundancy but is physically connected via Fibre

Optic cables. This allows high amounts of data between the virtualised servers

to be transferred, peaking at over 2tb/s (The NVME storage often limits before

this but multiple concurrent connections can reach a max of 2tb/s). This

network of routers and switches connecting the buildings as illustrated earlier

creates a ‘Local Area Network’ for the hardware thanks to virtualisation

software, even though it is technically a Wider Area Network or WAN.

Finally, Amazon provides a dedicated Mail Server which the website uses to

send and receive emails. This is run in a similar fashion on a virtualised machine,

however, in this case, Amazon doesn’t currently offer mail servers in Ohio where

the other instances are located. As such, these servers are located in North

Virginia and have to communicate through the internet, luckily Amazon has a

private internet line running the majority of the way, connecting the two data

centres allowing internet/data transfer costs between the instances to be

lower than standard Telco rates.

Software

The website uses a significant amount of software to run but in terms of the

most important the Ubuntu Server distribution would come at the top. This is the

operating system that all of the virtual machines run as it is free, efficient and

very small meaning it takes up a very small amount of disk space. In regards to

specifics, Amazon uses containerisation technologies such as Docker in order

to create these ‘virtualised instances’ on the servers as such all of my code is

run inside a ‘container’ that Docker creates. These containers states than can

be simply saved, stopped and started at any time allowing fast changes to my

server, whenever I need via a simple online control panel. Inside my main

Ubuntu container, I have a variety of software running, with the website being

controlled by Python using a library called Flask. This library, however, needs

other software to run efficiently in a production environment. In the case of the

demo server running the code using a standard Python interpreter works fine,

however, this would run on only one thread, meaning that the code has to run

synchronously, i.e. one after the other. This means if the code has to wait, i.e. if

someone is uploading a file than any other people trying to access the website

would have to wait until that file is uploaded and the code can continue

running. This naturally is not appropriate for production and is why I used

GUnicorn as a WSGI server. A WSGI (Web Server Gateway Interface) translates

incoming HTTP (Web Based) Packets and forwards them to the appropriate

section of Python code. In this process, it also manages any services of Python

and creates multiple threads. This means that multiple workers or ‘copies’ of

the python program are run each time a request is received hence stopping

the freezing problem illustrated earlier. However, software like GUnicorn needs

to be configured appropriately to ensure that there are always threads

available on the CPU and it doesn’t end up trying to use more than it has

available, in turn crashing the whole OS. However, GUnicorn isn’t the only

software used to receive web requests. When a packet first is directed to the

server it gets received by a program called Apache. This program allows me

to define rules and firewall protection as well as defining where each request

goes depending on the location and header URL attached. For example, if a

URL contains https://minecraft.server-lists.com/static I know that it just wants to

return the file on the hard drive and as such it is much more efficient to use

Apache to return the file rather than bothering to load up a valuable Python

service worker with GUnicorn. In other cases I can specify specific subdomains,

for example, any request to admin.server-lists.com will go to a separate

GUnicorn instance that is connected to my Admin Flask Python program with

a similar strategy employed for the Minecraft section. This means that certain

domains can be enabled and disabled easily without affecting each other, as

long as the server is still running effectively.

In regards to syncing the files across to the server, I use a program called Git.

This is a tool that allows you to track any file changes in a directory or project

and download just those. It also allows any easy rollbacks if mistakes are made.

In this case, I store all of my website code and files on a free service called

https://minecraft.server-lists.com/static

Github in a private repository. This service is extremely useful as you can see all

of your files online and edit any changes or revert to any previous commits

(commits are just changes to files).

Pushing (Sending files) to Github is relatively simple as well, it is all done through

the command line with a few simple steps (Once git is installed and setup

naturally). Just type git push and then git commit –a and you will be prompted

to enter a message with your changes and it will then upload them instantly.

Once a change has been pushed I simply remote access into the server using

a program called Putty which gives me access to the command line of the

server as long as I enter my password correctly. All I have to do is then simply

type sudo git pull and any changes that it has detected will then be

downloaded. Then I just have to restart the GUnicorn service works by typing

sudo systemctl restart adminprogram or mcprogram and it will restart the

respective sections of the website, usually with almost 0 delay. However, in

order to push my changes to the Github repository from my demo server, I use

repl.it’s new feature available to subscribers of its hacker plan. As repl.it is an

online code editor and runner it will automatically track any changes to files I

have made. All I have to do is then simply select the source control tab, type

in a commit message and press the commit button. If I want to undo any of

my changes I can simply select any commits in my history and rollback to them

straight away.

Amazon mainly manages my Relational Database for me meaning I don’t

have to do too much except run queries on it. However, I prefer to have a way

of visualising my database and the default MySQL software that Amazon runs

doesn’t allow for this, as such I have installed PHPMyAdmin which is a web tool

that allows you to visualise a MySQL Database. In this case, I installed the

software on the same server that the website is running on allowing the login

for PHPMyAdmin to be available at https://db.server-lists.com/phpmyadmin.

Once logged in I am then able to visualise all of the data in my database easily

and edit it if need be. This also helps when debugging as my demo database

is available here as well.

https://db.server-lists.com/phpmyadmin

Implementation

Conversion Method

Justification

In regards to this project, there are two main conversion methods that could

be potentially appropriate, direct and parallel. The main advantages of direct

are that it is instantaneous and cheap as well as quick which allows this project

to be completed quite quickly and hopefully earlier than expected. However,

this has the disadvantage that if any bugs were to appear then I wouldn’t have

any time to fix them, potentially making a bad first impression on some viewers.

In this case, I have decided to go with a more slightly phased approach. This

means that I release individual features over time to see how the public reacts

to them. This also means that initially there shouldn’t be as big a chance for

bugs as not all of the site is released. This is particularly well suited to this type

of site as it doesn’t have much initial traffic and it can perform its function with

just a few features initially until I get a chance to add more later on. Often a

disadvantage of a phased approach is having to allow both systems to work

together but in this case, there isn’t an old system to have to worry about as it

is a brand new product. In regards to the other two implementation methods,

a Parallel approach doesn’t necessarily work very well here as there was no

previous system so a parallel approach essentially isn’t available as it would

just become a direct cutover. In regards to a pilot conversion, it is technically

feasible to have a skilled group try to test and break the system but in this case,

I feel I didn’t necessarily have the time to run this detailed of a conversion as

the client specifically wanted it to be ready as soon as possible. So although

there could be a few more bugs at the beginning because it is brand new and

likely to have little traffic, to begin with, it shouldn’t necessarily be as big of a

problem.

Results

Overall, choosing to implement the website in phases worked rather well,

initially I released a pretty barebones version which had a few bugs but

eventually there were fewer bugs each time until I had fully released

everything that was planned. The main stages I released was adding

categories, implementing Votifier votes, image optimisation + reformatting

and finally the main SEO change where I added all the relevant tags and

descriptions. By the final few stages, I had gotten used to the process of

deploying changes and finding any bugs on the demonstration version before

they were deployed meaning that the upgrading was generally seamless.

Overall the choice of a Phased approach did take more time than a direct

one but it was well worth it as my users and client appreciate the seeing how

quickly the website developed.

Participant Training

a. [Provide details of what, who and how you are going to train

participants]

b. [Provide details of any documentation you will provide

participants. Actual documents should be in the Appendix]

Initial Testing

The main areas of testing that I have conducted on my website are Stress

Testing, using both Live and Fake Test Data as well as Range and Acceptance

Testing on any forms or data entry points that users can enter into. Alongside

this peer testing was also conducted where a Cyber Security expert analysed

my code and attempted to break the website. This variety of testing methods

will help ensure that when the project launches it shouldn’t break and in most

case scenarios it should be bug free, in turn increasing the overall user

experience and making the site more enjoyable to use.

Testing, Evaluation & Maintenance

Testing

The main areas of testing that I have conducted on my website are Stress

Testing, using both Live and Fake Test Data as well as Range and Acceptance

Testing on any forms or data entry points that users can enter into. Alongside

this peer testing was also conducted where a Cyber Security expert analysed

my code and attempted to break the website. This variety of testing methods

will help ensure that when the project launches it shouldn’t break and in most

case scenarios it should be bug free, in turn increasing the overall user

experience and making the site more enjoyable to use.

To begin with I decided to Stress test my website. One main way that websites

can get taken down is with DDOS attacks which are of malicious intent and

where a bunch of nodes try to flood a web server with lots of fake packets until

it doesn’t have enough processing power to handle them all and ends up

freezing legitimate users from the site. As a way of mitigating this I secured my

website behind Cloudflares free DDOS protection plan. This is a wonderful

service that has extremely high security standards and invests in mitigating

malicious attacks. The way that this works is rather then routing traffic directly

to my web server it first goes through Cloudflares servers. As more than 40% of

the webs traffic flows through Cloudflares servers they have developed

sophisticated technologies for detecting and outright blocking DDOS attacks

with the largest attack ever totalling 1.3 TB/s. This kind of technology helps

mitigate any purposeful DDOS attacks against my server but the possibility of

having too many real users trying to access the website and crashing it still

exists. To mitigate this I have decided to use an inbuilt tool developed by the

creators of Flask which when run locally on the server hosting the machine will

attempt to see how many requests it can handle before crashing. In my case

the website with its current resource allocation will be able to handle about

50,000 concurrent requests every second before experiencing degradation.

For reference a concurrent request is sent each time a page is loaded and as

users are often doing this every second the theoretical maximum amount of

users is more likely around 200,000. As such with the help of Amazon’s

automatic scaling libraries I have programmed it such that when the CPU or

RAM usage of the server reaches higher than 95% for more than 2 minutes it

will increase its resource for the next hour. If the traffic slows down it will then

release those resources, in turn saving money and becoming more efficient.

Hence the theoretical maximum amount of concurrent users on the site could

be in the millions relatively easily as long as the server is able to continuously

scale up its resources.

Additionally, I ensured that any data entered into forms particularly in regards

to adding/setting account or server details was validated properly and

acceptable. To do this I used a mix of fake test data that was designed to test

edge cases as well as live data entered by other users who may have different

ideas to break the system. Examples of test cases that needed to be checked

was when creating an account, here the usernames all have to be unique,

particularly as they are a primary key in the database. This means that if a

username is already used it needs to display an error message as seen below.

Other examples include ensuring passwords entered are strong or even in

scenarios such as setting a Servers port, for this particular field it needs to be

entirely numerical as well as greater than 1000 and less than 10000. To combat

this there is both client and server side validation, having both is extremely

beneficial. Majority of the time client/browser side validation will catch a form

before it is submitted meaning the server doesn’t even have to both

processing the request as it is never sent. However, in the odd case that client

side validation doesn’t work or someone has a malicious browser there is also

the exact same verification server side that will in this case prevent the form

from submitting and updating the database. Naturally, during testing there

were a few bugs found from this type of testing for example Votifier details

didn’t get checked because they were optional and not required. These kind

of cases are very difficult to pick up without using live test data. Overall the

conjunction of live and pre-generated test data worked well in finding bugs,

as illustrated above they were mainly in regards to input validation not

correctly checking types or sizes properly.

Finally as a precaution I asked a cyber-security friend to go through and review

my code. This was quite beneficial because often another point of view from

a programmer can show bugs or issues that you wouldn’t have thought of. In

this case issues appeared when trying to insert raw html into either the reporting

section or a server description. This is referred to as an injection attack and

means that when it is displayed the HTML will actually run, meaning that

anyone can insert their own HTML onto the website and in this case it would

often appear in the administrator section. Alongside this he was also able to

do a similar trick when emails were sent were it would inject HTML into the body.

Overall he didn’t find too many issues and the peer check was rather

successful in finding those final bugs.

In conclusion the combination of stress testing, form validation checking using

live and fake test data as well as getting a peer to review the code was worth

it. I do believe that particularly going through these options in this order is best,

particularly leaving the peer review to last in order to find the most difficult of

bugs rather than ones that would be picked up in the other tests.

Evaluation

[Does the new information system satisfy the purpose/requirements]

a. [Provide details of what technique you will use to collect this

 information – survey, interview, observations and measurements]

b. [Summarise the results – actual questions etc should be in the

appendix]

Maintenance

Overall the system is very easy to change and a significant amount of it can

be done with no coding experience at all. However currently there is some

simply steps in the user documentation detailing how to change text on any of

the pages if they need minor modifications. Otherwise a simple guide on how

to log into the administrator section of the website at https://admin.server-

lists.com should suffice in most of the daily ongoing tasks such as reviewing

reports, server submissions or tag requests. Most of the systems in this panel are

pretty self-explanatory and simple to use as such most users with the ability to

access a computer, the internet and the ability to remember their login details

should be capable of reviewing the aforementioned features.

In regards to any adjustments of the code, the demo server is always available

on repl.it with instructions in the user manual on how to push changes to the

server quickly and easily. As such the ability to preview any changes to the

code without pushing to the live version is extremely helpful and should make

maintaining fairly easy. In conjunction, the easy access of a visual database

tool at https://db.server-lists.com makes it easy to view database records and

adjust them if need be without programming at all.

https://admin.server-lists.com/
https://admin.server-lists.com/
https://db.server-lists.com/

If any errors were to occur whilst the server is running then the program Sentry

will pick up on it.

This program has a free tier that will allow up to 1000 errors/month and give

detailed stack traces and logs of everything that happened around the time

of the error. This is extremely helpful, particularly if you aren’t technically

minded because it can easily be forwarded to a programmer for fixing rather

than just saying “the site is broken” a log is already created and ready to send

off/view.

Overall, every effort has been made to ensure that this system is easy to

maintain and update with a significant amount of tools and resources to help

and problems can usually be fixed by reviewing the User Documentation

provided.

