-
Notifications
You must be signed in to change notification settings - Fork 115
/
Readme.txt
37 lines (30 loc) · 1.28 KB
/
Readme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
1. Download the VGG-NET-19 mat file and put into the model folder using the link
https://uofi.box.com/shared/static/kxzjhbagd6ih1rf7mjyoxn2hy70hltpl.mat
or using the link if you are in China
http://pan.baidu.com/s/1kU1Me5T
Note that this mat file is compatile with the MatConvNet-1beta10 used in this work, if you download the mat file from
http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat,
please pay attention to the version compatibility.
2. Include the path of matconvnet/matlab
3. Run the main entry file run_tracker.m
% Note that RUN_CF2 is an interfance for OBT-50 and OBT-100:
%
% process a sequence using CF2 (Correlation filter tracking with convolutional features)
%
% Input:
% - seq: sequence name
% - res_path: result path
% - bSaveImage: flag for saving images
% Output:
% - results: tracking results, position prediction over time
%
% It is provided for educational/researrch purpose only.
% If you find the software useful, please consider cite our paper.
%
% Hierarchical Convolutional Features for Visual Tracking
% Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang
% IEEE International Conference on Computer Vision, ICCV 2015
%
% Contact:
% Chao Ma ([email protected]), or
% Jia-Bin Huang ([email protected]).