forked from cszn/IRCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Demo_demosaiking.m
200 lines (167 loc) · 6.31 KB
/
Demo_demosaiking.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
%==========================================================================
% This is the testing code of IRCNN for color image demosaiking.
%
% @inproceedings{zhang2017learning,
% title={Learning Deep CNN Denoiser Prior for Image Restoration},
% author={Zhang, Kai and Zuo, Wangmeng and Gu, Shuhang and Zhang, Lei},
% booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
% pages={3929--3938},
% year={2017},
% }
%
% If you have any question, please feel free to contact with <Kai Zhang ([email protected])>.
%
% -----------McMaster18--------
% --Set18----Color Demosaiking-
% -----------------------------
% 01.tif -- 30.26dB -- 0.93
% 02.tif -- 35.26dB -- 0.94
% 03.tif -- 34.69dB -- 0.97
% 04.tif -- 38.37dB -- 0.99
% 05.tif -- 35.09dB -- 0.95
% 06.tif -- 39.19dB -- 0.97
% 07.tif -- 39.66dB -- 0.98
% 08.tif -- 39.44dB -- 0.97
% 09.tif -- 38.64dB -- 0.96
% 10.tif -- 39.51dB -- 0.97
% 11.tif -- 40.46dB -- 0.97
% 12.tif -- 38.86dB -- 0.96
% 13.tif -- 40.71dB -- 0.95
% 14.tif -- 38.99dB -- 0.96
% 15.tif -- 39.47dB -- 0.96
% 16.tif -- 34.39dB -- 0.95
% 17.tif -- 34.79dB -- 0.96
% 18.tif -- 36.21dB -- 0.96
% Average PSNR and SSIM
% 37.4447dB 0.9614
% ----------Kodak24-----------------
% ----Set24-----Color Demosaiking---
% ----------------------------------
% kodim01.png -- 40.30dB -- 0.99
% kodim02.png -- 39.79dB -- 0.97
% kodim03.png -- 43.63dB -- 0.98
% kodim04.png -- 41.21dB -- 0.98
% kodim05.png -- 39.24dB -- 0.99
% kodim06.png -- 40.54dB -- 0.99
% kodim07.png -- 43.26dB -- 0.99
% kodim08.png -- 37.70dB -- 0.98
% kodim09.png -- 42.07dB -- 0.97
% kodim10.png -- 42.03dB -- 0.98
% kodim11.png -- 40.55dB -- 0.98
% kodim12.png -- 42.96dB -- 0.98
% kodim13.png -- 36.94dB -- 0.98
% kodim14.png -- 38.98dB -- 0.98
% kodim15.png -- 40.59dB -- 0.97
% kodim16.png -- 43.05dB -- 0.99
% kodim17.png -- 41.38dB -- 0.98
% kodim18.png -- 38.15dB -- 0.98
% kodim19.png -- 40.63dB -- 0.98
% kodim20.png -- 41.30dB -- 0.98
% kodim21.png -- 40.27dB -- 0.98
% kodim22.png -- 39.14dB -- 0.98
% kodim23.png -- 43.05dB -- 0.98
% kodim24.png -- 36.22dB -- 0.98
% Average PSNR and SSIM
% 40.5409dB 0.9806
%
% by Kai Zhang (1/2018)
%==========================================================================
clear; clc;
addpath('utilities');
imageSets = {'Set18','Set24'}; % testing dataset
setTest = imageSets(1); % select the dataset
useGPU = 1;
folderTest = 'testsets';
folderResult = 'results';
folderModel = 'models';
if ~exist(folderResult,'file')
mkdir(folderResult);
end
setTestCur = cell2mat(setTest(1));
disp('--------------------------------------------');
disp(['----',setTestCur,'--Color Image Demosaiking--']);
disp('--------------------------------------------');
folderTestCur = fullfile(folderTest,setTestCur);
% folder to store results
folderResultCur = fullfile(folderResult, ['Demosaik_',setTestCur]);
if ~exist(folderResultCur,'file')
mkdir(folderResultCur);
end
%% Noise level
noiselevel = 0; % default; noiselevel = 10; Isigma = 10/255; Msigma = 8;
%% parameter setting in HQS (tune the following parameters to obtain the best results)
%% -------------------important!------------------
% Parameter settings of IRCNN
% (1) image noise level: Isigma
Isigma = 0.5/255; % default 0.5/255 for noise-free image, ****** from interval [1/255, 20/255] ******; e.g., 1/255, 2.55/255, 7/255, 11/255
% (2) noise level of the last denoiser: Msigma
Msigma = 2; % default 2 for noise-free image, ****** from {1 2 3 4 5 7 9 11 13 15} ******
%--------------------------------------------------------
%% load denoisers
load(fullfile(folderModel,'modelcolor.mat'));
%% default parameter setting in HQS
totalIter = 30; % default 30
lamda = (Isigma^2)/3; % default 3, ****** from {1 2 3 4} ******
modelSigma1 = 49; % default 49
modelSigmaS = logspace(log10(modelSigma1),log10(Msigma),totalIter);
rho = Isigma^2/((modelSigma1/255)^2);
ns = min(25,max(ceil(modelSigmaS/2),1));
ns = [ns(1)-1,ns];
ext = {'*.jpg','*.png','*.bmp','*.tif'};
filepaths = [];
for i = 1 : length(ext)
filepaths = cat(1,filepaths,dir(fullfile(folderTestCur, ext{i})));
end
PSNRs = zeros(1,length(filepaths));
SSIMs = zeros(1,length(filepaths));
for i = 1 : length(filepaths)
label = imread(fullfile(folderTestCur,filepaths(i).name));
[~, Iname, ext] = fileparts(filepaths(i).name);
label = im2single(label);
% generate mask
[B, y, mask] = mosaic_bayer(label, 'grbg', noiselevel);
y = single(y);
mask = single(mask);
z = linearlcc(B, 0);
z = single(z);
z0 = z;
if useGPU
z = gpuArray(z);
y = gpuArray(y);
end
for itern = 1:totalIter
% step 1
rho = lamda*255^2/(modelSigmaS(itern)^2);
z = (y+rho*z)./(mask+rho);
if ns(itern+1)~=ns(itern)
[net] = loadmodel(modelSigmaS(itern),CNNdenoiser);
net = vl_simplenn_tidy(net);
if useGPU
net = vl_simplenn_move(net, 'gpu');
end
end
% step 2
res = vl_simplenn(net, z,[],[],'conserveMemory',true,'mode','test');
residual = res(end).x;
z = z - residual;
% imshow(z)
% title(int2str(itern))
% drawnow;
end
if useGPU
output = im2uint8(gather(z));
y = im2uint8(gather(y));
end
%output(mask==1) = y(mask==1);
[PSNR_Cur,SSIM_Cur] = Cal_PSNRSSIM(im2uint8(label),output,10,10);
PSNRs(i) = PSNR_Cur;
SSIMs(i) = SSIM_Cur;
imshow(cat(2,y,output));
drawnow;
pause(0.001);
disp([filepaths(i).name,' -- ', num2str(PSNR_Cur,'%2.2f'),'dB -- ', num2str(SSIM_Cur,'%2.2f')]);
% imwrite(y,fullfile(folderResultCur,[Iname,'_mosaik.png']));
% imwrite(output,fullfile(folderResultCur,[Iname,'_ircnn.png']));
end
disp('Average PSNR and SSIM')
disp([mean(PSNRs),mean(SSIMs)]);