-
Notifications
You must be signed in to change notification settings - Fork 1
/
matcher.scm
271 lines (226 loc) · 7.21 KB
/
matcher.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
;;;; modified version of GJS matcher that does comparison with aliases
#|
For an explanation of comparison with aliases, see Section 2.1.1.1
of report.pdf.
Interface (beyond regular matching):
- (match:set-compound_obj_aliases! x)
|#
(declare (usual-integrations))
(define match:compound_obj_aliases 'nothing)
; set! the alias definitions to be used during matching.
(define (match:set-compound_obj_aliases! x)
(set! match:compound_obj_aliases x))
; Returns #t if (memq obj lst)
(define (memq? obj lst)
(not (not (memq obj lst))))
; In match:element, we use match:special-equal? instead of equal?
; to do alias comparison.
(define (match:special-equal? dict_val data)
(if (not (list? match:compound_obj_aliases))
; no aliases exist, use default equality
(equal? dict_val data)
; do equality with aliases
; if thing in dict is string (alias name):
; it only matches strings (alias name)
; if thing in dict is symbol (entity):
; it matches symbols (entity) or alias values
(cond ((string? dict_val) (equal? dict_val data))
((symbol? dict_val)
(let ((alias_list (assoc data match:compound_obj_aliases)))
(or (equal? dict_val data)
(and alias_list (memq? dict_val (cdr alias_list)) ))))
(else (equal? dict_val data)))))
;;;; Matcher based on match combinators, CPH/GJS style.
;;; Idea is in Hewitt's PhD thesis (1969).
;;; There are match procedures that can be applied to data items. A
;;; match procedure either accepts or rejects the data it is applied
;;; to. Match procedures can be combined to apply to compound data
;;; items.
;;; A match procedure takes a list containing a data item, a
;;; dictionary, and a success continuation. The dictionary
;;; accumulates the assignments of match variables to values found in
;;; the data. The success continuation takes two arguments: the new
;;; dictionary, and the number of items absorbed from the list by the
;;; match. If a match procedure fails it returns #f.
;;; Primitive match procedures:
(define (match:eqv pattern-constant)
(define (eqv-match data dictionary succeed)
;(pp (list "***eqv-match car of:" data "against:" pattern-constant "dict:" dictionary))
(and (pair? data)
(eqv? (car data) pattern-constant)
(succeed dictionary 1)))
eqv-match)
(define (match:element variable restrictions)
(define (ok? datum)
(every (lambda (restriction)
(restriction datum))
restrictions))
(define (element-match data dictionary succeed)
;(pp (list "***element-match" data variable dictionary restrictions))
(and (pair? data)
(ok? (car data))
(let ((vcell (match:lookup variable dictionary)))
(if vcell
(begin 'true-block
;(pp (list "***e-m:true-block" (match:value vcell) (car data)))
(and (match:special-equal? (match:value vcell) (car data))
(succeed dictionary 1))
)
(begin 'false-block
;(pp (list "***e-m:false-block"))
(succeed (match:bind variable
(car data)
dictionary)
1)
)
))))
element-match)
;;; Support for the dictionary.
(define (match:bind variable data-object dictionary)
(cons (list variable data-object) dictionary))
(define (match:lookup variable dictionary)
(assq variable dictionary))
(define (match:value vcell)
(cadr vcell))
(define (match:segment variable)
(define (segment-match data dictionary succeed)
;(pp (list "***segment-match" data variable dictionary))
(and (list? data)
(let ((vcell (match:lookup variable dictionary)))
(if vcell
(let lp ((data data)
(pattern (match:value vcell))
(n 0))
(cond ((pair? pattern)
(if (and (pair? data)
(equal? (car data) (car pattern)))
(lp (cdr data) (cdr pattern) (+ n 1))
#f))
((not (null? pattern)) #f)
(else (succeed dictionary n))))
(let ((n (length data)))
(let lp ((i 0))
(if (<= i n)
(or (succeed (match:bind variable
(list-head data i)
dictionary)
i)
(lp (+ i 1)))
#f)))))))
segment-match)
(define (match:list . match-combinators)
(define (list-match data dictionary succeed)
(and (pair? data)
(let lp ((lst (car data))
(matchers match-combinators)
(dictionary dictionary))
(cond ((pair? matchers)
((car matchers)
lst
dictionary
(lambda (new-dictionary n)
(if (> n (length lst))
(error "Matcher ate too much."
n))
(lp (list-tail lst n)
(cdr matchers)
new-dictionary))))
((pair? lst) #f)
((null? lst)
(succeed dictionary 1))
(else #f)))))
list-match)
;;; Syntax of matching is determined here.
(define (match:element? pattern)
(and (pair? pattern)
(eq? (car pattern) '?)))
(define (match:segment? pattern)
(and (pair? pattern)
(eq? (car pattern) '??)))
(define (match:variable-name pattern) (cadr pattern))
(define (match:restrictions pattern) (cddr pattern))
(define (match:list? pattern)
(and (list? pattern)
(or (null? pattern)
(not (memq (car pattern) '(? ??))))))
(define match:->combinators
(make-generic-operator 1 'eqv match:eqv))
(defhandler match:->combinators
(lambda (pattern)
(match:element
(match:variable-name pattern)
(match:restrictions pattern)))
match:element?)
(defhandler match:->combinators
(lambda (pattern) (match:segment (match:variable-name pattern)))
match:segment?)
(defhandler match:->combinators
(lambda (pattern)
(apply match:list (map match:->combinators pattern)))
match:list?)
(define (matcher pattern)
(let ((match-combinator (match:->combinators pattern)))
(lambda (datum)
(match-combinator (list datum)
'()
(lambda (dictionary n)
(and (= n 1)
dictionary))))))
#|
(define (report-success dict n)
(assert (= n 1))
`(succeed ,dict))
((match:->combinators '(a ((? b) 2 3) 1 c))
'((a (1 2 3) 1 c))
'()
report-success)
;Value: (succeed ((b 1)))
((match:->combinators '(a ((? b) 2 3) (? b) c))
'((a (1 2 3) 2 c))
'()
report-success)
;Value: #f
((match:->combinators '(a ((? b) 2 3) (? b) c))
'((a (1 2 3) 1 c))
'()
report-success)
;Value: (succeed ((b 1)))
((match:->combinators '(a (?? x) (?? y) (?? x) c))
'((a b b b b b b c))
'()
(lambda (dict n)
(assert (= n 1))
(pp `(succeed ,dict))
#f))
(succeed ((y (b b b b b b)) (x ())))
(succeed ((y (b b b b)) (x (b))))
(succeed ((y (b b)) (x (b b))))
(succeed ((y ()) (x (b b b))))
;Value: #f
((matcher '(a ((? b) 2 3) (? b) c))
'(a (1 2 3) 1 c))
;Value: ((b 1))
|#
;;; Nice pattern inspection procedure that will be used by the
;;; pattern-directed invocation system.
(define (match:pattern-names pattern)
(let loop ((pattern pattern) (names '()))
(cond ((or (match:element? pattern)
(match:segment? pattern))
(let ((name
(match:variable-name pattern)))
(if (memq name names)
names
(cons name names))))
((list? pattern)
(let elt-loop
((elts pattern) (names names))
(if (pair? elts)
(elt-loop (cdr elts)
(loop (car elts) names))
names)))
(else names))))
#|
(match:pattern-names '((? a) (?? b)))
;Value: (b a)
|#