This is a sample application to demonstrate how to build an application on AWS Serverless Envinronment using the AWS SAM, Amazon API Gateway, AWS Lambda and Amazon DynamoDB. It also uses the DynamoDBMapper ORM structure to map Study items in a DynamoDB table to a RESTful API for managing Studies.
- AWS CLI already configured with at least PowerUser permission
- Java SE Development Kit 8 installed
- Docker installed
- Maven
- SAM CLI
- Python 3
We use maven
to install our dependencies and package our application into a JAR file:
mvn install
Invoking function locally through local API Gateway
- Start DynamoDB Local in a Docker container.
docker run -p 8000:8000 -v $(pwd)/local/dynamodb:/data/ amazon/dynamodb-local -jar DynamoDBLocal.jar -sharedDb -dbPath /data
- Create the DynamoDB table.
aws dynamodb create-table --table-name study --attribute-definitions AttributeName=topic,AttributeType=S AttributeName=dateTimeCreation,AttributeType=S AttributeName=tag,AttributeType=S AttributeName=consumed,AttributeType=S --key-schema AttributeName=topic,KeyType=HASH AttributeName=dateTimeCreation,KeyType=RANGE --local-secondary-indexes 'IndexName=tagIndex,KeySchema=[{AttributeName=topic,KeyType=HASH},{AttributeName=tag,KeyType=RANGE}],Projection={ProjectionType=ALL}' 'IndexName=consumedIndex,KeySchema=[{AttributeName=topic,KeyType=HASH},{AttributeName=consumed,KeyType=RANGE}],Projection={ProjectionType=ALL}' --billing-mode PAY_PER_REQUEST --endpoint-url http://localhost:8000
If the table already exist, you can delete: aws dynamodb delete-table --table-name study --endpoint-url http://localhost:8000
- Start the SAM local API.
- On a Mac:
sam local start-api --env-vars src/test/resources/test_environment_mac.json --skip-pull-image --warm-containers eager
- On Windows:
sam local start-api --env-vars src/test/resources/test_environment_windows.json --skip-pull-image --warm-containers eager
- On Linux:
sam local start-api --env-vars src/test/resources/test_environment_linux.json --skip-pull-image --warm-containers eager
OBS:
- (1) If you already have the container locally (in your case the java8), then you can use --skip-pull-image to remove the download
- (2) --warm-containers eager: Specifies how AWS SAM CLI manages containers for each function. Two modes are available: EAGER: Containers for all functions are loaded at startup and persist between invocations. LAZY: Containers are only loaded when each function is first invoked. Those containers persist for additional invocations.
If the previous command ran successfully you should now be able to hit the following local endpoint to
invoke the functions rooted at http://localhost:3000/study/{topic}?starts=2020-01-02&ends=2020-02-02
.
It shoud return 404. Now you can explore all endpoints, use the src/test/resources/Study DataLake.postman_collection.json to import a API Rest Collection into Postman.
SAM CLI is used to emulate both Lambda and API Gateway locally and uses our template.yaml
to
understand how to bootstrap this environment (runtime, where the source code is, etc.) - The
following excerpt is what the CLI will read in order to initialize an API and its routes:
AWS Lambda Java runtime accepts either a zip file or a standalone JAR file - We use the latter in
this example. SAM will use CodeUri
property to know where to look up for both application and
dependencies:
Firstly, we need a S3 bucket
where we can upload our Lambda functions packaged as ZIP before we
deploy anything - If you don't have a S3 bucket to store code artifacts then this is a good time to
create one:
export BUCKET_NAME=my-cool-new-bucket
aws s3 mb s3://$BUCKET_NAME
Next, run the following command to package our Lambda function to S3:
sam package \
--template-file template.yaml \
--output-template-file packaged.yaml \
--s3-bucket $BUCKET_NAME
Next, the following command will create a Cloudformation Stack and deploy your SAM resources.
sam deploy \
--template-file packaged.yaml \
--stack-name study-datalake \
--capabilities CAPABILITY_IAM
See Serverless Application Model (SAM) HOWTO Guide for more details in how to get started.
After deployment is complete you can run the following command to retrieve the API Gateway Endpoint URL:
aws cloudformation describe-stacks \
--stack-name sam-orderHandler \
--query 'Stacks[].Outputs'
AWS CLI commands to package, deploy and describe outputs defined within the cloudformation stack:
sam package \
--template-file template.yaml \
--output-template-file packaged.yaml \
--s3-bucket REPLACE_THIS_WITH_YOUR_S3_BUCKET_NAME
sam deploy \
--template-file packaged.yaml \
--stack-name sam-orderHandler \
--capabilities CAPABILITY_IAM \
--parameter-overrides MyParameterSample=MySampleValue
aws cloudformation describe-stacks \
--stack-name sam-orderHandler --query 'Stacks[].Outputs'
Next, you can use the following resources to know more about beyond hello world samples and how others structure their Serverless applications: