forked from kangyishuai/NEWS-TEXT-CLASSIFICATION
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pred.py
214 lines (169 loc) · 6.27 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# 模型预测脚本
import numpy as np
import pandas as pd
from bert4keras.backend import keras, K
from bert4keras.models import build_transformer_model
from bert4keras.snippets import sequence_padding, DataGenerator
from bert4keras.tokenizers import Tokenizer
from keras.layers import *
# BERT base
config_path = 'pre_models/bert_config.json'
checkpoint_path = 'pre_models/bert_model.ckpt'
dict_path = 'pre_models/vocab.txt'
n = 5 # Cross-validation
SEED = 2020
num_classes = 14
maxlen = 512
max_segment = 2
batch_size = 4
grad_accum_steps = 64
drop = 0.2
lr = 2e-5
epochs = 100
def load_data(df):
"""加载数据。"""
D = list()
for _, row in df.iterrows():
text = row['text']
label = row['label']
D.append((text, int(label)))
return D
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
def sentence_split(words):
"""句子截断。"""
document_len = len(words)
index = list(range(0, document_len, maxlen-2))
index.append(document_len)
segments = []
for i in range(len(index) - 1):
segment = words[index[i]: index[i + 1]]
assert len(segment) > 0
segment = tokenizer.tokens_to_ids(['[CLS]'] + segment + ['[SEP]'])
segments.append(segment)
assert len(segments) > 0
if len(segments) > max_segment:
segment_ = int(max_segment / 2)
return segments[:segment_] + segments[-segment_:]
else:
return segments
class data_generator(DataGenerator):
"""数据生成器。"""
def __init__(self, data, batch_size=32, buffer_size=None, random=False):
super().__init__(data, batch_size, buffer_size)
self.random = random
def __iter__(self, random=False):
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
for is_end, (text, label) in self.sample(random):
token_ids = sentence_split(text)
token_ids = sequence_padding(token_ids, length=maxlen)
segment_ids = np.zeros_like(token_ids)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_labels.append([label])
if len(batch_token_ids) == self.batch_size or is_end:
batch_token_ids = sequence_padding(
batch_token_ids, length=max_segment)
batch_segment_ids = sequence_padding(
batch_segment_ids, length=max_segment)
batch_labels = sequence_padding(batch_labels)
yield [batch_token_ids, batch_segment_ids], batch_labels
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
def forfit(self):
while True:
for d in self.__iter__(self.random):
yield d
class Attention(Layer):
"""注意力层。"""
def __init__(self, hidden_size, **kwargs):
self.hidden_size = hidden_size
super().__init__(**kwargs)
def build(self, input_shape):
initializer = keras.initializers.truncated_normal(mean=0.0, stddev=0.05)
# 为该层创建一个可训练的权重
self.weight = self.add_weight(
name='weight',
shape=(self.hidden_size, self.hidden_size),
initializer=initializer,
trainable=True)
self.bias = self.add_weight(
name='bias',
shape=(self.hidden_size,),
initializer='zero',
trainable=True)
self.query = self.add_weight(
name='query',
shape=(self.hidden_size, 1),
initializer=initializer,
trainable=True)
super().build(input_shape) # 一定要在最后调用它
def call(self, x):
x, mask = x
mask = K.squeeze(mask, axis=2)
# linear
key = K.bias_add(K.dot(x, self.weight), self.bias)
# compute attention
outputs = K.squeeze(K.dot(key, self.query), axis=2)
outputs -= 1e32 * (1 - mask)
attn_scores = K.softmax(outputs)
attn_scores *= mask
attn_scores = K.reshape(
attn_scores, shape=(-1, 1, attn_scores.shape[-1]))
outputs = K.squeeze(K.batch_dot(attn_scores, key), axis=1)
return outputs
def compute_output_shape(self, input_shape):
return input_shape[0][0], self.hidden_size
def build_model():
"""构建模型。"""
token_ids = Input(shape=(max_segment, maxlen), dtype='int32')
segment_ids = Input(shape=(max_segment, maxlen), dtype='int32')
input_mask = Masking(mask_value=0)(token_ids)
input_mask = Lambda(
lambda x: K.cast(K.any(x, axis=2, keepdims=True), 'float32')
)(input_mask)
token_ids1 = Lambda(
lambda x: K.reshape(x, shape=(-1, maxlen))
)(token_ids)
segment_ids1 = Lambda(
lambda x: K.reshape(x, shape=(-1, maxlen))
)(segment_ids)
# 加载预训练模型
bert = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
return_keras_model=False,
)
output = bert.model([token_ids1, segment_ids1])
output = Lambda(lambda x: x[:, 0])(output)
output = Lambda(
lambda x: K.reshape(x, shape=(-1, max_segment, output.shape[-1]))
)(output)
output = Multiply()([output, input_mask])
output = Dropout(drop)(output)
output = Attention(output.shape[-1].value)([output, input_mask])
output = Dropout(drop)(output)
output = Dense(
units=num_classes,
activation='softmax',
kernel_initializer=bert.initializer
)(output)
model = keras.models.Model([token_ids, segment_ids], output)
return model
def do_predict(df_test):
test_data = load_data(df_test)
test_generator = data_generator(test_data, batch_size)
model = build_model()
res = np.zeros((len(test_data), num_classes))
for i in range(1, n+1):
model.load_weights(f'weights-{i}.h5')
pred = model.predict_generator(
test_generator.forfit(), steps=len(test_generator))
res += pred / n
return res
if __name__ == '__main__':
df_test = pd.read_csv('data/test_a.csv', sep='\t')
df_test['label'] = 0
df_test['text'] = df_test['text'].apply(lambda x: x.strip().split())
res = do_predict(df_test)
df_test['label'] = res.argmax(axis=1)
df_test.to_csv('submission.csv', index=False, columns=['label'])