This repository has been archived by the owner on Mar 20, 2024. It is now read-only.
forked from parallella/pal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
p_gauss3x3.c
115 lines (110 loc) · 2.76 KB
/
p_gauss3x3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#include <pal.h>
#define C0 (0.0751136080f)
#define C1 (0.1238414032f)
#define CS (1.6487212707f) //(C1/C0)
#define FMA(a,b,c) __builtin_fmaf(a,b,c)
/**
* A 3x3 gauss smoothing filter with the following convolution matrix
*
* | 0.0751136080 0.1238414032 0.0751136080 |
* M = | 0.1238414032 0.2041799556 0.1238414032 |
* | 0.0751136080 0.1238414032 0.0751136080 |
*
* Notes: cols and rows may be any size
* Coefficients calculated with the Gaussian 2D distribution equation:
* e^(-(px^2+py^2)/(2*S^2)) and then normalized
* Sigma (S) is 1, px and py are pixel offsets.
* A naive algorithm uses 14 or 17 operations per pixel.
* The optimized algorithm below uses 8 operations per pixel.
*
* @param x Pointer to input image, a 2D array of size 'rows' x 'cols'
*
* @param r Pointer to output image
*
* @param rows Number of rows in input image
*
* @param cols Number of columns in input image
*
* @return None
*
*/
void p_gauss3x3_f32(const float * x, float * r, int rows, int cols)
{
int i, j;
float a02, a03, a04, a05;
float a12, a13, a14, a15;
float a22, a23, a24, a25;
float c0, c1, c2, c3, c4, c5;
const float *px = x;
float *pr = r + cols + 1;
for (j = 0; j < (rows - 2); j++) {
// Unroll 4x is smaller code than 5x and maybe faster. The prefetch and loop
// block may be removed to possibly reduce code size with reduced performance
a04 = px[0];
a05 = px[1];
a14 = px[cols+0];
a15 = px[cols+1];
a24 = px[2*cols+0];
a25 = px[2*cols+1];
c4 = FMA(C1,a14,FMA(C0,a04,C0*a24));
c5 = FMA(C1,a15,FMA(C0,a05,C0*a25));
for (i = 0; i < (cols - 5); i += 4) {
a02 = px[2];
a03 = px[3];
a04 = px[4];
a05 = px[5];
a12 = px[cols+2];
a13 = px[cols+3];
a14 = px[cols+4];
a15 = px[cols+5];
a22 = px[2*cols+2];
a23 = px[2*cols+3];
a24 = px[2*cols+4];
a25 = px[2*cols+5];
c0 = c4;
c1 = c5;
c2 = FMA(C1,a12,FMA(C0,a02,C0*a22));
c3 = FMA(C1,a13,FMA(C0,a03,C0*a23));
c4 = FMA(C1,a14,FMA(C0,a04,C0*a24));
c5 = FMA(C1,a15,FMA(C0,a05,C0*a25));
*(pr++) = FMA(CS,c1,c0+c2);
*(pr++) = FMA(CS,c2,c1+c3);
*(pr++) = FMA(CS,c3,c2+c4);
*(pr++) = FMA(CS,c4,c3+c5);
px += 4;
}
// catching remainder
switch(cols-i) {
case 5:
a05 = px[2];
a15 = px[cols+2];
a25 = px[2*cols+2];
c3 = c4;
c4 = c5;
c5 = FMA(C1,a15,FMA(C0,a05,C0*a25));
*(pr++) = FMA(CS,c4,c3+c5);
px++;
case 4:
a05 = px[2];
a15 = px[cols+2];
a25 = px[2*cols+2];
c3 = c4;
c4 = c5;
c5 = FMA(C1,a15,FMA(C0,a05,C0*a25));
*(pr++) = FMA(CS,c4,c3+c5);
px++;
case 3:
a05 = px[2];
a15 = px[cols+2];
a25 = px[2*cols+2];
c3 = c4;
c4 = c5;
c5 = FMA(C1,a15,FMA(C0,a05,C0*a25));
*(pr++) = FMA(CS,c4,c3+c5);
px++;
}
px += 2;
pr += 2;
}
return;
}