We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add calculator function for Periodicity characteristic for given intervals array using formula: $$\displaystyle \Delta_{gj} / \Delta_{aj}$$
X = [2, 4, 2, 2, 4] masked_X = ma.masked_array(X) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Normal') result = periodicity(x_intervals) print(result) > [0.944925, 0.97996]
X = [1, 2, 3] masked_X = ma.masked_array(X) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Normal') result = periodicity(x_intervals) print(result) > [1, 1, 1]
X = [1, 2, 3] masked_X = ma.masked_array(X) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'End', 'Normal') result = periodicity(x_intervals) print(result) > [1, 1, 1]
X = ['B','B','B','A','A','B','B','A','B','B'] mask = [1, 1, 1, 0, 0, 1, 1, 0, 1, 1] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Lossy') result = periodicity(x_intervals) print(result) > [0.8661]
X = ['B','B','B','A','A','B','B','A','B','B'] mask = [1, 1, 1, 0, 0, 1, 1, 0, 1, 1] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Normal') result = periodicity(x_intervals) print(result) > [0.8585]
X = ['B','B','B','A','A','B','B','A','B','B'] mask = [1, 1, 1, 0, 0, 1, 1, 0, 1, 1] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'End', 'Normal') result = periodicity(x_intervals) print(result) > [0.8915]
X = ['B','B','B','A','A','B','B','A','B','B'] mask = [1, 1, 1, 0, 0, 1, 1, 0, 1, 1] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Redundant') result = periodicity(x_intervals) print(result) > [0.8907]
X = ['B','B','B','A','A','B','B','A','B','B'] mask = [1, 1, 1, 0, 0, 1, 1, 0, 1, 1] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Cycle') result = periodicity(x_intervals) print(result) > [0.7862]
X = ['B'] masked_X = ma.masked_array(X,) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Lossy') result = periodicity(x_intervals) print(result) > [0]
X = ['B'] masked_X = ma.masked_array(X,) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Normal') result = periodicity(x_intervals) print(result) > [0]
X = ['B'] masked_X = ma.masked_array(X,) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'End', 'Normal') result = periodicity(x_intervals) print(result) > [1]
X = ['B'] masked_X = ma.masked_array(X,) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Redundant') result = periodicity(x_intervals) print(result) > [1]
X = ['B'] masked_X = ma.masked_array(X,) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Cycle') result = periodicity(x_intervals) print(result) > [1]
X = ['A','A','A','A','A','A','A','B'] mask = [1, 1, 1, 1, 1, 1, 1, 0] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Lossy') result = periodicity(x_intervals) print(result) > [0]
X = ['A','A','A','A','A','A','A','B'] mask = [1, 1, 1, 1, 1, 1, 1, 0] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Normal') result = periodicity(x_intervals) print(result) > [1]
X = ['A','A','A','A','A','A','A','B'] mask = [1, 1, 1, 1, 1, 1, 1, 0] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'End', 'Normal') result = periodicity(x_intervals) print(result) > [1]
X = ['A','A','A','A','A','A','A','B'] mask = [1, 1, 1, 1, 1, 1, 1, 0] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Redundant') result = periodicity(x_intervals) print(result) > [0.628539361]
X = ['A','A','A','A','A','A','A','B'] mask = [1, 1, 1, 1, 1, 1, 1, 0] masked_X = ma.masked_array(X, mask) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Cycle') result = periodicity(x_intervals) print(result) > [1]
X = ['A','A','A','A','A'] masked_X = ma.masked_array(X) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Lossy') result = periodicity(x_intervals) print(result) > [1]
X = ['A','A','A','A','A'] masked_X = ma.masked_array(X) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Normal') result = periodicity(x_intervals) print(result) > [1]
X = ['A','A','A','A','A'] masked_X = ma.masked_array(X) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'End', 'Normal') result = periodicity(x_intervals) print(result) > [1]
X = ['A','A','A','A','A'] masked_X = ma.masked_array(X) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Redundant') result = periodicity(x_intervals) print(result) > [1]
X = ['A','A','A','A','A'] masked_X = ma.masked_array(X) order, alphabet = ma.order(masked_X, True) x_intervals = ma.intervals(order, 'Start', 'Cycle') result = periodicity(x_intervals) print(result) > [1]
The text was updated successfully, but these errors were encountered:
Maximus2012
No branches or pull requests
Add calculator function for Periodicity characteristic for given intervals array using formula:
$$\displaystyle \Delta_{gj} / \Delta_{aj}$$
Examples
The text was updated successfully, but these errors were encountered: