You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Add calculator function for Geometric Mean characteristic for given intervals array using formula: $$\displaystyle \Delta_g=\sqrt[n]{V}= \sqrt[n]{\prod_{j=1}^{m} \prod_{i=1}^{n_j} \Delta_{ij}}$$
Where $\Delta_{ij}$ is an interval and $n$ is number of intervals in the sequence.
Examples
X = [2, 4, 2, 2, 4]
x_intervals = intervals(X, 'Start', 'Normal')
result = geometric_mean(x_intervals)
print(result)
> 1,64375
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'Start', 'Lossy')
result = geometric_mean(x_intervals)
print(result)
> 2.0339
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'Start', 'Normal')
result = geometric_mean(x_intervals)
print(result)
> 2.155
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'End', 'Normal')
result = geometric_mean(x_intervals)
print(result)
> 2.0237
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'Start', 'Redundant')
result = geometric_mean(x_intervals)
print(result)
> 2.1182
X = ['B','B','A','A','C','B','A','C','C','B']
x_intervals = intervals(X, 'Start', 'Cycle')
result = geometric_mean(x_intervals)
print(result)
> 2.3522
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'Start', 'Lossy')
result = geometric_mean(x_intervals)
print(result)
> 2.139826387867
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'Start', 'Normal')
result = geometric_mean(x_intervals)
print(result)
> 2.513888742864
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'End', 'Normal')
result = geometric_mean(x_intervals)
print(result)
> 2.25869387
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'End', 'Redundant')
result = geometric_mean(x_intervals)
print(result)
> 2.4953181811241978
X = ['C','C','A','C','G','C','T','T','A','C']
x_intervals = intervals(X, 'End', 'Cycle')
result = geometric_mean(x_intervals)
print(result)
> 2.843527111557
X = ['C','C','C','C']
x_intervals = intervals(X, 'Start', 'Lossy')
result = geometric_mean(x_intervals)
print(result)
> 1
X =['C','C','C','C']
x_intervals = intervals(X, 'Start', 'Normal')
result = geometric_mean(x_intervals)
print(result)
> 1
X = ['C','C','C','C']
x_intervals = intervals(X, 'End', 'Normal')
result = geometric_mean(x_intervals)
print(result)
> 1
X = ['C','C','C','C']
x_intervals = intervals(X, 'End', 'Redundant')
result = geometric_mean(x_intervals)
print(result)
> 1
X = ['C','C','C','C']
x_intervals = intervals(X, 'End', 'Cycle')
result = geometric_mean(x_intervals)
print(result)
> 1
No intervals
X = ['C','G']
x_intervals = intervals(X, 'End', 'Lossy')
result = geometric_mean(x_intervals)
print(result)
> 0
X = ['A','C','G','T']
x_intervals = intervals(X, 'End', 'Lossy')
result = geometric_mean(x_intervals)
print(result)
> 0
X = [2, 1]
x_intervals = intervals(X, 'End', 'Lossy')
result = geometric_mean(x_intervals)
print(result)
> 0
Add calculator function for Geometric Mean characteristic for given intervals array using formula:
$$\displaystyle \Delta_g=\sqrt[n]{V}= \sqrt[n]{\prod_{j=1}^{m} \prod_{i=1}^{n_j} \Delta_{ij}}$$ $\Delta_{ij}$ is an interval and $n$ is number of intervals in the sequence.
Where
Examples
No intervals
Inequalities with arithmetic mean
The text was updated successfully, but these errors were encountered: