-
Notifications
You must be signed in to change notification settings - Fork 7
/
gen_phonemes.py
65 lines (52 loc) · 2.1 KB
/
gen_phonemes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import multiprocessing
import os.path
from glob import glob
import torch
from tqdm import tqdm
from data_conf import data_root
from text.bert import get_bert_feature
from text.cleaner import clean_text
import numpy as np
from multiprocessing import Pool
out_dir = "dump"
os.makedirs(out_dir, exist_ok=True)
phoneme_path = os.path.join(out_dir, "phoneme.npy")
phone_dict = {}
def process_file(data):
wav_path, language = data
lab_path = wav_path.replace(".wav", ".lab").replace(".mp3", ".lab")
if os.path.exists(lab_path):
print(lab_path)
text = open(lab_path, encoding='utf-8').readline().strip()
try:
phones, word2ph, norm_text = clean_text(text, language)
rank = multiprocessing.current_process()._identity
rank = rank[0] if len(rank) > 0 else 0
gpu_id = rank % torch.cuda.device_count()
device = torch.device(f"cuda:{gpu_id}")
bert_feature = get_bert_feature(norm_text, word2ph, device, language)
torch.save(bert_feature.cpu(), wav_path.replace(".wav", ".bert.pt").replace(".mp3", ".bert.pt"))
phones = " ".join(phones)
return (wav_path, phones)
except Exception as e:
print(f"Error in {wav_path}, {text}", e)
return None
else:
return None
if __name__ == '__main__':
for language in ['zh']:
filenames = glob(f"{data_root}/{language}/**/*.wav", recursive=True)
filenames += glob(f"{data_root}/{language}/**/*.mp3", recursive=True)
# Define the number of processes to use
num_processes = 1 # You can adjust this as needed
# multiprocessing.set_start_method("spawn", force=True)
print(len(filenames))
with Pool(num_processes) as pool:
results = list(tqdm(pool.imap(process_file, [(f, language) for f in filenames]), total=len(filenames)))
for result in results:
if result is not None:
phone_dict[result[0]] = result[1]
# 输出前10个
for k, v in list(phone_dict.items())[:10]:
print(k, v)
np.save(phoneme_path, phone_dict)