-
Notifications
You must be signed in to change notification settings - Fork 0
/
classVCO.py
215 lines (117 loc) · 5.2 KB
/
classVCO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 1 14:46:38 2023
@author: Rehana Sultana
"""
import numpy as np
import math
import matplotlib.pyplot as plt
class classVCO:
# Initialize with freq, Ts
def __init__(self,freq,Ts):
self.freq = freq
self.Ts = Ts
self.maxCountVal = self.freq * self.Ts # maxCountVal : Length of the period of the signal
self.countVal = self.maxCountVal # countVal : indicator at an instance (it changes everytime the VCOstep method is called )
def VCOstep(self):
'''
Parameters
----------
self : an object/instance of classVCO
Returns
-------
edgeFlag : an instantaneous step pulse (for trigger graph it'll give 1, -1, or 0)\n
squareGraph : 1 or 0 from the square graph at any instance
'''
halfPeriod = math.floor(0.5*self.maxCountVal) # halfPeriod : where 0's changes to 1's or vice versa
temp = np.random.normal(0, 0.8, 1)[0]
# trigger graph logic
if self.countVal == halfPeriod:
edgeFlag = -1
elif self.countVal == self.maxCountVal:
edgeFlag = 1
else:
edgeFlag = 0
# Square graph logic
if(self.countVal > halfPeriod):
squareGraph = 1
else:
squareGraph = 0
# Decrement of countval by 1
self.countVal = self.countVal - 1
# Resetting step (After one Cycle)
if self.countVal == 0:# this where a new cycle starts
# Period jitetr
temp = np.random.normal(0, 0.5, 1)[0]
#print(f"random number ={randomNoise}")
#plt.stem(temp)
#randomNoise = math.floor(temp)
randomNoise = np.round(temp,0)
# print(f"random number ={randomNoise}")
# Resetting the countval to maxvalue so that the cycle restarts + some period jitters
self.countVal = self.maxCountVal + randomNoise
return edgeFlag, squareGraph
class classVCOv2:
'''
Version 2 : class VCO \n
Introducing the SD of the random noise as parameter
'''
# Initialize with freq, Ts
def __init__(self, clockPeriod, N, f0, RMSjitter):
'''
Parameters
----------
clockPeriod : integer, Clock Period
N : int, number of points.
f0 : int
operating frequency.
RMSjitter :
RMS Jitter in second.
Returns
-------
None.
'''
# Compute RMSjitter (in number)
Tosr = clockPeriod/N
sigmaNum = int(round(RMSjitter/Tosr, 0)) # to make it whole number
self.freq = f0
self.maxCountVal = int(1/(self.freq * Tosr)) # maxCountVal : Length of the period of the signal
self.countVal = self.maxCountVal # countVal : indicator at an instance (it changes everytime the VCOstep method is called )
self.sdNoise = sigmaNum
def VCOstep(self):
'''
Parameters
----------
self : an object/instance of classVCO
Returns
-------
edgeFlag : an instantaneous step pulse (for trigger graph it'll give 1, -1, or 0)\n
squareGraph : 1 or 0 from the square graph at any instance
'''
halfPeriod = math.floor(0.5*self.maxCountVal) # halfPeriod : where 0's changes to 1's or vice versa
# trigger graph logic
if self.countVal == halfPeriod:
edgeFlag = -1
elif self.countVal == self.maxCountVal:
edgeFlag = 1
else:
edgeFlag = 0
# Square graph logic
if(self.countVal > halfPeriod):
squareGraph = 1
else:
squareGraph = 0
# Decrement of countval by 1
self.countVal = self.countVal - 1
# Resetting step (After one Cycle)
if self.countVal == 0:# this where a new cycle starts
# Period jitetr
temp = np.random.normal(0, self.sdNoise, 1)[0]
#print(f"random number ={randomNoise}")
#plt.stem(temp)
#randomNoise = math.floor(temp)
randomNoise = np.round(temp,0)
# print(f"random number ={randomNoise}")
# Resetting the countval to maxvalue so that the cycle restarts + some period jitters
self.countVal = self.maxCountVal + randomNoise
return edgeFlag, squareGraph