Skip to content

Latest commit

 

History

History
128 lines (106 loc) · 7.05 KB

README.md

File metadata and controls

128 lines (106 loc) · 7.05 KB

Box Training Methods

This repository contains code which accompanies the paper Capacity and Bias of Learned Geometric Embeddings for Directed Graphs (Boratko et al. 2021).

This code includes implementations of many geometric embedding methods:

It also provides a general-purpose pipeline to explore correlation between graph characteristics and models' learning capabilities.

Installation

This repository makes use of submodules, to clone them you should use the --recurse-submodules flag, eg.

git clone <repo-url> --recurse-submodules

After cloning the repo, you should create an environment and install pytorch. For example,

conda create -n box-training-methods python=3.8
conda activate box-training-methods
conda install -c pytorch cudatoolkit=11.3 pytorch

You can then run make all to install the remaining modules and their dependencies. Note:

  1. This will install Python modules, so you should run this command with the virtual environment created previously activated.
  2. Certain graph generation methods (Kronecker and Price Network) will require additional dependencies to be compiled. In particular, Price requires that you use conda. If you are not interested in generating Kronecker or Price graphs you can skip this by using make base instead of make all.

Usage

This module provides a command line interface available with box_training_methods.

Graph Modeling

Example training command:

box_training_methods train --task graph_modeling \
--data_path ./data/graphs13/balanced_tree/branching\=10-log_num_nodes\=13-transitive_closure\=True/ \
--model_type tbox --dim 8 --epochs 25 --negative_sampler hierarchical --hierarchical_negative_sampling_strategy uniform

Example eval command (make sure the model hyperparams are the same as the ones the checkpoint was trained on):

/usr/bin/env python scripts/box-training-methods eval \
--data_path=data/graphs13/price/c=0.01-gamma=1.0-log_num_nodes=13-m=5-transitive_closure=True/9.npz \
--task=graph_modeling \
--model_type=tbox --tbox_temperature_type=global --box_intersection_temp=0.01 --box_volume_temp=1.0 --log_eval_batch_size=17 --dim=128 \
--box_model_path /work/pi_mccallum_umass_edu/brozonoyer_umass_edu/box-training-methods/wandb/run-20230514_012634-zpbp23bk/files/learned_model.epoch-16.pt

Multilabel Classification (non-BioASQ)

Example train command for multilabel_classification task, which includes the MLC datasets used in Patel et al. 2022

box_training_methods train --task multilabel_classification \
--data_path ./data/box-mlc-iclr-2022-data/expr_FUN/ \
--model_type hard_box --dim 8 --epochs 25 --negative_sampler hierarchical --hierarchical_negative_sampling_strategy exact

BioASQ (English)

Example command for bioasq task (BioASQ Task A):

box_training_methods train --task bioasq \
--data_path ./data/mesh/allMeSH_2020.json \
--mesh_parent_child_mapping_path ./data/mesh/MeSH_parent_child_mapping_2020.txt \
--mesh_name_id_mapping_path ./data/mesh/MeSH_name_id_mapping_2020.txt \
--model_type tbox --dim 8 --epochs 25 --negative_sampler hierarchical --hierarchical_negative_sampling_strategy exact

Example eval command:

/usr/bin/env python scripts/box-training-methods eval \
--task bioasq \
--data_path ./data/mesh/ \
--mesh_parent_child_mapping_path ./data/mesh/MeSH_parent_child_mapping_2020.txt \
--mesh_name_id_mapping_path ./data/mesh/MeSH_name_id_mapping_2020.txt \
--bioasq_huggingface_encoder nlpie/bio-distilbert-uncased \
--instance_encoder_path /work/pi_mccallum_umass_edu/brozonoyer_umass_edu/box-training-methods/bioasq_models/embeddings.epoch-0.step-10.pt \
--box_model_path /work/pi_mccallum_umass_edu/brozonoyer_umass_edu/box-training-methods/bioasq_models/tbox.epoch-0.step-10.pt

MESINESP2 (Spanish)

Example train command:

CUDA_LAUNCH_BLOCKING=1 CUDA_VISIBLE_DEVICES=0 /usr/bin/env python scripts/box-training-methods train \
--task bioasq \
--data_path ./data/bioasq/MESINESP2/ \
--bioasq_train_path ./data/bioasq/MESINESP2/Subtrack2-Clinical_Trials/Train/training_set_subtrack2.json \
--bioasq_dev_path ./data/bioasq/MESINESP2/Subtrack2-Clinical_Trials/Development/development_set_subtrack2.json \
--bioasq_test_path ./data/bioasq/MESINESP2/Subtrack2-Clinical_Trials/Test/test_set_subtrack2.json \
--bioasq_english False \
--mesh_parent_child_mapping_path ./data/bioasq/MESINESP2/DeCS2020.parent_child_mapping.txt \
--mesh_name_id_mapping_path ./data/bioasq/MESINESP2/DeCS2020.tsv \
--ancestors_cache_dir /work/pi_mccallum_umass_edu/brozonoyer_umass_edu/box-training-methods/data/bioasq/MESINESP2/cache/ancestors \
--negatives_cache_dir /work/pi_mccallum_umass_edu/brozonoyer_umass_edu/box-training-methods/data/bioasq/MESINESP2/cache/negatives \
--model_type tbox --dim 4 --log_batch_size 0 --epochs 25 \
--bioasq_huggingface_encoder microsoft/biogpt

Citations

If you found the code contained in this repository helpful in your research, please cite the following papers:

@inproceedings{boratko2021capacity,
  title={Capacity and Bias of Learned Geometric Embeddings for Directed Graphs},
  author={Boratko, Michael and Zhang, Dongxu and Monath, Nicholas and Vilnis, Luke and Clarkson, Kenneth L and McCallum, Andrew},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
@article{patel2022modeling,
  title={Modeling label space interactions in multi-label classification using box embeddings},
  author={Patel, Dhruvesh and Dangati, Pavitra and Lee, Jay-Yoon and Boratko, Michael and McCallum, Andrew},
  journal={ICLR 2022 Poster},
  year={2022}
}