We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
测试下来发现:中文的输出还是带有英式中文的痕迹,但总体来说效果还行。观察到一些数据样例,发现翻译对的约束项似乎是标准译文的随机分割。这和论文中的 Ch 3. 的展示内容有些出入。是否实际训练时这种对于模型的约束并不强?有相关分析吗?
The text was updated successfully, but these errors were encountered:
实验Ch 4.1.5,data/constrained_translation中的数据是采用以往词汇约束机器翻译任务(Lexically Constrained Machine Translation)的标准化流程构造的(通过源句子和目标句子之间的fastalign对齐从目标句子抽取的约束项),不准确的对齐可能导致一些约束项不是特别严格。
Ch 3. 的展示内容是训练中采用的交互式翻译数据,训练数据中的约束项是比较准确和严格的。实验Ch 4.2的人工评价中,人类交互中的约束项是比较严格的,更能反映BayLing对严格约束项的指令遵循能力。
Sorry, something went wrong.
No branches or pull requests
测试下来发现:中文的输出还是带有英式中文的痕迹,但总体来说效果还行。观察到一些数据样例,发现翻译对的约束项似乎是标准译文的随机分割。这和论文中的 Ch 3. 的展示内容有些出入。是否实际训练时这种对于模型的约束并不强?有相关分析吗?
The text was updated successfully, but these errors were encountered: