We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,我阅读论文发现。您都是将ViG作为一个主干网络后接经典CNN完成任务的。 请问像ViG这种图神经网络主干做语义分割任务,有没有其他专门关于图节点考虑的Decoder?
The text was updated successfully, but these errors were encountered:
目前还没见到端到端用GNN的,我觉得用GNN做decoder是个值得探索的课题
Sorry, something went wrong.
您好,我在阅读ViG代码的时候发现DyGraphConv2d方法下,有一个y=F.avg_pool2d(x, self.r, self.r)。然后再计算x与y的TopK距离获得邻居,虽然只在前两个下采样之前进行这种操作,但是我不知道这种操作的意义。为什么不直接计算x的TopK距离呢? 我尝试将这个y去掉,发现效果竟然不比原来好。
这个目的是为了降低计算量,否则节点数太多了
No branches or pull requests
您好,我阅读论文发现。您都是将ViG作为一个主干网络后接经典CNN完成任务的。
请问像ViG这种图神经网络主干做语义分割任务,有没有其他专门关于图节点考虑的Decoder?
The text was updated successfully, but these errors were encountered: