-
Notifications
You must be signed in to change notification settings - Fork 4
/
train.py
380 lines (305 loc) · 18.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import os
import time
import argparse
import json
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
import torch.multiprocessing as mp
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from env import AttrDict, build_env
from datasets.dataset import Val_Dataset, Dataset, mag_pha_stft, mag_pha_istft, get_dataset_filelist
from models.generator import MUSE, pesq_score, phase_losses
from models.discriminator import MetricDiscriminator, batch_pesq
from utils import scan_checkpoint, load_checkpoint, save_checkpoint
torch.backends.cudnn.benchmark = True
# def WeightedLoss(clean, noise_label, clean_loss, noise_loss, eps=2e-7):
# bsum = lambda x: torch.sum(x, dim=1)
# a = bsum(clean ** 2) / (bsum(clean ** 2) + bsum(noise_label ** 2) + eps)
#
# return torch.mean(a * clean_loss + (1 - a) * noise_loss)
def train(rank, a, h):
if h.num_gpus > 1:
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda:{:d}'.format(rank))
generator = MUSE(h).to(device)
discriminator = MetricDiscriminator().to(device)
if rank == 0:
print(generator)
num_params = 0
for p in generator.parameters():
num_params += p.numel()
print("Generator Parameters : ", num_params)
os.makedirs(a.checkpoint_path, exist_ok=True)
os.makedirs(os.path.join(a.checkpoint_path, 'logs'), exist_ok=True)
print("checkpoints directory : ", a.checkpoint_path)
if os.path.isdir(a.checkpoint_path):
cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
cp_do = scan_checkpoint(a.checkpoint_path, 'do_')
steps = 0
if cp_g is None or cp_do is None:
state_dict_do = None
last_epoch = -1
else:
state_dict_g = load_checkpoint(cp_g, device)
state_dict_do = load_checkpoint(cp_do, device)
generator.load_state_dict(state_dict_g['generator'])
discriminator.load_state_dict(state_dict_do['discriminator'])
steps = state_dict_do['steps'] + 1
last_epoch = state_dict_do['epoch']
if h.num_gpus > 1:
generator = DistributedDataParallel(generator, device_ids=[rank], find_unused_parameters=True).to(device)
discriminator = DistributedDataParallel(discriminator, device_ids=[rank], find_unused_parameters=True).to(device)
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
optim_d = torch.optim.AdamW(discriminator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
if state_dict_do is not None:
optim_g.load_state_dict(state_dict_do['optim_g'])
optim_d.load_state_dict(state_dict_do['optim_d'])
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
training_indexes, validation_indexes = get_dataset_filelist(a)
trainset = Dataset(training_indexes, a.input_clean_wavs_dir, a.input_noisy_wavs_dir,
h.segment_size, h.n_fft, h.hop_size, h.win_size, h.sampling_rate, h.compress_factor,
split=True, n_cache_reuse=0, shuffle=False if h.num_gpus > 1 else True, device=device)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=True,
drop_last=True)
if rank == 0:
validset = Val_Dataset(validation_indexes, a.input_clean_wavs_dir, a.input_noisy_wavs_dir,
h.segment_size, h.n_fft, h.hop_size, h.win_size, h.sampling_rate, h.compress_factor,
split=False, shuffle=False, n_cache_reuse=0, device=device)
validation_loader = DataLoader(validset, num_workers=h.num_workers, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=True,
drop_last=True)
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))
generator.train()
discriminator.train()
for epoch in range(max(0, last_epoch), a.training_epochs):
if rank == 0:
start = time.time()
print("Epoch: {}".format(epoch+1))
if h.num_gpus > 1:
train_sampler.set_epoch(epoch)
for i, batch in enumerate(train_loader):
if rank == 0:
start_b = time.time()
clean_audio, clean_mag, clean_pha, clean_com, noisy_audio, noisy_mag, noisy_pha = batch # [B, 1, F, T], F = nfft // 2+ 1, T = nframes
clean_audio = torch.autograd.Variable(clean_audio.to(device, non_blocking=True))
clean_mag = torch.autograd.Variable(clean_mag.to(device, non_blocking=True))
clean_pha = torch.autograd.Variable(clean_pha.to(device, non_blocking=True))
clean_com = torch.autograd.Variable(clean_com.to(device, non_blocking=True))
noisy_audio = torch.autograd.Variable(clean_audio.to(device, non_blocking=True))
noisy_mag = torch.autograd.Variable(noisy_mag.to(device, non_blocking=True))
noisy_pha = torch.autograd.Variable(noisy_pha.to(device, non_blocking=True))
one_labels = torch.ones(h.batch_size).to(device, non_blocking=True)
mag_g, pha_g, com_g = generator(noisy_mag, noisy_pha)
audio_g = mag_pha_istft(mag_g, pha_g, h.n_fft, h.hop_size, h.win_size, h.compress_factor)
audio_list_r, audio_list_g = list(clean_audio.cpu().numpy()), list(audio_g.detach().cpu().numpy())
batch_pesq_score = batch_pesq(audio_list_r, audio_list_g)
# Discriminator
optim_d.zero_grad()
metric_r = discriminator(clean_mag, clean_mag)
metric_g = discriminator(clean_mag, mag_g.detach())
loss_disc_r = F.mse_loss(one_labels, metric_r.flatten())
if batch_pesq_score is not None:
loss_disc_g = F.mse_loss(batch_pesq_score.to(device), metric_g.flatten())
else:
loss_disc_g = 0
loss_disc_all = loss_disc_r + loss_disc_g
loss_disc_all.backward()
optim_d.step()
optim_g.zero_grad()
# L2 Magnitude Loss
loss_mag = F.mse_loss(clean_mag, mag_g)
# Anti-wrapping Phase Loss
loss_ip, loss_gd, loss_iaf = phase_losses(clean_pha, pha_g, h)
loss_pha = loss_ip + loss_gd + loss_iaf
# L2 Complex Loss
loss_com = F.mse_loss(clean_com, com_g) * 2
# Metric Loss
metric_g = discriminator(clean_mag, mag_g)
loss_metric = F.mse_loss(metric_g.flatten(), one_labels)
loss_gen_all = loss_metric * 0.05 + loss_mag * 0.9 + loss_pha * 0.3 + loss_com * 0.1
# loss_gen_all = WeightedLoss(clean_audio, noise_label, loss_gen_all, 0.2*noise_loss)
loss_gen_all.backward()
optim_g.step()
if rank == 0:
# STDOUT logging
if steps % a.stdout_interval == 0:
with torch.no_grad():
metric_error = F.mse_loss(metric_g.flatten(), one_labels).item()
mag_error = F.mse_loss(clean_mag, mag_g).item()
ip_error, gd_error, iaf_error = phase_losses(clean_pha, pha_g, h)
pha_error = (loss_ip + loss_gd + loss_iaf).item()
com_error = F.mse_loss(clean_com, com_g).item()
# time_error = F.l1_loss(clean_audio, audio_g).item()
print('Steps : {:d}, Gen Loss: {:4.3f}, Disc Loss: {:4.3f}, Metric loss: {:4.3f}, Magnitude Loss : {:4.3f}, Phase Loss : {:4.3f}, Complex Loss : {:4.3f}, s/b : {:4.3f}'.
format(steps, loss_gen_all, loss_disc_all, metric_error, mag_error, pha_error, com_error, time.time() - start_b))
# checkpointing
if steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps)
save_checkpoint(checkpoint_path,
{'discriminator': (discriminator.module if h.num_gpus > 1 else discriminator).state_dict(),
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
'epoch': epoch})
# Tensorboard summary logging
if steps % a.summary_interval == 0:
sw.add_scalar("Training/Generator Loss", loss_gen_all, steps)
sw.add_scalar("Training/Discriminator Loss", loss_disc_all, steps)
sw.add_scalar("Training/Metric Loss", metric_error, steps)
sw.add_scalar("Training/Magnitude Loss", mag_error, steps)
sw.add_scalar("Training/Phase Loss", pha_error, steps)
sw.add_scalar("Training/Complex Loss", com_error, steps)
# sw.add_scalar("Training/Time Loss", time_error, steps)
# Validation
if steps % a.validation_interval == 0 and steps != 0:
torch.cuda.empty_cache()
generator.eval()
torch.cuda.empty_cache()
audios_r, audios_g = [], []
val_mag_err_tot = 0
val_pha_err_tot = 0
val_com_err_tot = 0
segment_size = h.segment_size
n_fft = h.n_fft
hop_size = h.hop_size
win_size = h.win_size
compress_factor = h.compress_factor
with torch.no_grad():
for j, batch in enumerate(validation_loader):
clean_audio, noisy_audio = batch # [B, 1, F, T], F = nfft // 2+ 1, T = nframes
clean_mag, clean_pha, clean_com = mag_pha_stft(clean_audio, n_fft, hop_size, win_size,
compress_factor)
noisy_audio = torch.autograd.Variable(noisy_audio.to(device, non_blocking=True))
clean_audio = torch.autograd.Variable(clean_audio.to(device, non_blocking=True))
clean_mag = torch.autograd.Variable(clean_mag.to(device, non_blocking=True))
clean_pha = torch.autograd.Variable(clean_pha.to(device, non_blocking=True))
clean_com = torch.autograd.Variable(clean_com.to(device, non_blocking=True))
# norm_factor = torch.sqrt(len(noisy_audio) / torch.sum(noisy_audio ** 2.0)).to(device)
orig_size = noisy_audio.size(1)
# 判断是否需要补零
if noisy_audio.size(1) >= segment_size:
num_segments = noisy_audio.size(1) // segment_size
last_segment_size = noisy_audio.size(1) % segment_size
if last_segment_size > 0:
last_segment = noisy_audio[:, -segment_size:]
noisy_audio = noisy_audio[:, :-last_segment_size]
segments = torch.split(noisy_audio, segment_size, dim=1)
segments = list(segments)
segments.append(last_segment)
reshapelast = 1
else:
segments = torch.split(noisy_audio, segment_size, dim=1)
reshapelast = 0
else:
# 如果语音长度小于一个segment_size,则直接补零
padded_zeros = torch.zeros(1, segment_size - noisy_audio.size(1)).to(device)
noisy_audio = torch.cat((noisy_audio, padded_zeros), dim=1)
segments = [noisy_audio]
reshapelast = 0
# 处理每个语音切片并连接结果
processed_segments = []
audio_g = []
for i, segment in enumerate(segments):
noisy_amp, noisy_pha, noisy_com = mag_pha_stft(segment, n_fft, hop_size, win_size,
compress_factor)
amp_g, pha_g, com_g = generator(noisy_amp.to(device, non_blocking=True),
noisy_pha.to(device, non_blocking=True))
audio_g = mag_pha_istft(amp_g, pha_g, n_fft, hop_size, win_size, compress_factor)
audio_g = audio_g.squeeze()
if reshapelast == 1 and i == len(segments) - 2:
audio_g = audio_g[:-(segment_size - last_segment_size)]
# print(orig_size)
processed_segments.append(audio_g)
# 将所有处理后的片段连接成一个完整的语音
processed_audio = torch.cat(processed_segments, dim=-1)
# 裁切末尾部分,保留noisy_wav长度的部分
audio_g = processed_audio[:orig_size]
mag_g, pha_g, com_g = mag_pha_stft(audio_g, n_fft, hop_size, win_size,
compress_factor)
mag_g = torch.autograd.Variable(mag_g.to(device, non_blocking=True))
pha_g = torch.autograd.Variable(pha_g.to(device, non_blocking=True))
com_g = torch.autograd.Variable(com_g.to(device, non_blocking=True))
mag_g = mag_g.squeeze()
pha_g = torch.unsqueeze(pha_g, dim=0)
# com_g = com_g.squeeze()
clean_mag = clean_mag.squeeze()
# clean_pha = clean_pha.squeeze()
clean_com = clean_com.squeeze()
audios_r += torch.split(clean_audio, 1, dim=0) # [1, T] * B
# print(clean_audio.size())
# # print(len(audios_r))
audio_g = torch.unsqueeze(audio_g, dim=0)
audios_g += torch.split(audio_g, 1, dim=0)
# print(audio_g.size())
# print(len(audios_g))
val_mag_err_tot += F.mse_loss(clean_mag, mag_g).item()
val_ip_err, val_gd_err, val_iaf_err = phase_losses(clean_pha, pha_g, h)
val_pha_err_tot += (val_ip_err + val_gd_err + val_iaf_err).item()
val_com_err_tot += F.mse_loss(clean_com, com_g).item()
val_mag_err = val_mag_err_tot / (j+1)
val_pha_err = val_pha_err_tot / (j+1)
val_com_err = val_com_err_tot / (j+1)
print(len(audios_g))
val_pesq_score = pesq_score(audios_r, audios_g, h).item()
print('Steps : {:d}, PESQ Score: {:4.3f}, s/b : {:4.3f}'.
format(steps, val_pesq_score, time.time() - start_b))
sw.add_scalar("Validation/PESQ Score", val_pesq_score, steps)
sw.add_scalar("Validation/Magnitude Loss", val_mag_err, steps)
sw.add_scalar("Validation/Phase Loss", val_pha_err, steps)
sw.add_scalar("Validation/Complex Loss", val_com_err, steps)
generator.train()
steps += 1
scheduler_g.step()
scheduler_d.step()
if rank == 0:
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))
def main():
print('Initializing Training Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--group_name', default=None)
parser.add_argument('--input_clean_wavs_dir', default='./VB_DEMAND_16K/clean_train')
parser.add_argument('--input_noisy_wavs_dir', default='./VB_DEMAND_16K/noisy_train')
parser.add_argument('--input_training_file', default='VoiceBank+DEMAND/training.txt')
parser.add_argument('--input_validation_file', default='VoiceBank+DEMAND/test.txt')
parser.add_argument('--checkpoint_path', default='MUSE-16-bn2')
parser.add_argument('--config', default='')
parser.add_argument('--training_epochs', default=200, type=int)
parser.add_argument('--stdout_interval', default=5, type=int)
parser.add_argument('--checkpoint_interval', default=5000, type=int)
parser.add_argument('--summary_interval', default=100, type=int)
parser.add_argument('--validation_interval', default=1000, type=int)
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.checkpoint_path)
torch.manual_seed(h.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
h.num_gpus = torch.cuda.device_count()
h.batch_size = int(h.batch_size / h.num_gpus)
print('Batch size per GPU :', h.batch_size)
else:
pass
if h.num_gpus > 1:
mp.spawn(train, nprocs=h.num_gpus, args=(a, h,))
else:
train(0, a, h)
if __name__ == '__main__':
main()