forked from iam-abbas/cs-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
fermatsprime
72 lines (61 loc) · 1.44 KB
/
fermatsprime
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// C++ program to find the smallest twin in given range
#include <bits/stdc++.h>
using namespace std;
/* Iterative Function to calculate (a^n)%p in O(logy) */
int power(int a, unsigned int n, int p)
{
int res = 1; // Initialize result
a = a % p; // Update 'a' if 'a' >= p
while (n > 0)
{
// If n is odd, multiply 'a' with result
if (n & 1)
res = (res*a) % p;
// n must be even now
n = n>>1; // n = n/2
a = (a*a) % p;
}
return res;
}
/*Recursive function to calculate gcd of 2 numbers*/
int gcd(int a, int b)
{
if(a < b)
return gcd(b, a);
else if(a%b == 0)
return b;
else return gcd(b, a%b);
}
// If n is prime, then always returns true, If n is
// composite than returns false with high probability
// Higher value of k increases probability of correct
// result.
bool isPrime(unsigned int n, int k)
{
// Corner cases
if (n <= 1 || n == 4) return false;
if (n <= 3) return true;
// Try k times
while (k>0)
{
// Pick a random number in [2..n-2]
// Above corner cases make sure that n > 4
int a = 2 + rand()%(n-4);
// Checking if a and n are co-prime
if (gcd(n, a) != 1)
return false;
// Fermat's little theorem
if (power(a, n-1, n) != 1)
return false;
k--;
}
return true;
}
// Driver Program to test above function
int main()
{
int k = 3;
isPrime(11, k)? cout << " true\n": cout << " false\n";
isPrime(15, k)? cout << " true\n": cout << " false\n";
return 0;
}